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Abstract. The All-Pairs Shortest Paths (APSP) is a foundational problem in theoretical computer science.
Approximating APSP in undirected unweighted graphs has been studied for many years, beginning with the
work of Dor, Halperin and Zwick [SICOMP’00]. Many recent works have attempted to improve these original
algorithms using the algebraic tools of fast matrix multiplication. We improve on these results for the following
problems.

• For +2-approximate APSP, the state-of-the-art algorithm runs in O(n2.259) time [Dürr, IPL 2023; Deng,
Kirkpatrick, Rong, Vassilevska Williams, and Zhong, ICALP 2022]. We give an improved algorithm in
O(n2.2255) time.

• For +4 and +6-approximate APSP, we achieve time complexities O(n2.1462) and O(n2.1026) respectively,
improving the previous O(n2.155) and O(n2.103) achieved by [Saha and Ye, SODA 2024].

In contrast to previous works, we do not use the big hammer of bounded-difference (min,+)-product algorithms.
Instead, our algorithms are based on a simple technique that decomposes the input graph into a small number
of clusters of constant diameter and a remainder of low degree vertices, which could be of independent interest
in the study of shortest paths problems. We then use only standard fast matrix multiplication to obtain our
improvements.

1 Introduction All-Pairs Shortest Paths (APSP) is a fundamental problem in computer science: given an
edge-weighted graph G = (V,E) with |V | = n vertices, for every pair of vertices u, v ∈ V , compute their distance
d(u, v) in the graph G. The textbook Floyd–Warshall algorithm solves APSP in O(n3) time. The state-of-the-art
algorithm by Williams runs in n3/2Ω(

√
logn) time [17]. A central hypothesis in fine-grained complexity asserts

that no O(n3−ε)-time algorithms can solve APSP in edge-weighted graphs, for any ε > 0 (see [16]).
For unweighted graphs, better algorithms for APSP are known. Seidel [14] gave an algorithm for undirected

unweighted APSP in Õ(nω) time, where 2 ≤ ω < 2.3714 is the exponent of fast square matrix multiplication [2].
There are also subcubic time APSP algorithms for directed unweighted graphs, and more generally for graphs
with small integer weights; see e.g., [3, 15, 18].

In this paper, we focus on undirected unweighted APSP. There remains a gap between Seidel’s Õ(nω) time
and the ideal Õ(n2) time complexity (which would be nearly optimal). This gap can be explained by the Boolean
Matrix Multiplication (BMM) hypothesis from fine-grained complexity, which asserts that multiplying two n× n
matrices over the Boolean semi-ring cannot be solved in O(nω−ε) time, for any ε > 01. Since APSP in undirected
unweighted graphs is known to be at least as hard2 as BMM [1], this suggests that Seidel’s Õ(nω) time complexity
is likely nearly optimal.

Motivated by this situation, many works in the literature have considered approximate APSP in order to
bypass this hardness. In this paper, we focus on additive approximation: in an unweighted undirected graph
G = (V,E), the +C-APSP problem asks to compute distance estimates d̃(u, v) for every pair of vertices u, v ∈ V ,
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so that d(u, v) ≤ d̃(u, v) ≤ d(u, v)+C always holds. It is known that +1-APSP is still as hard as BMM [1], so +2

is the smallest additive error that allows improvement over Seidel’s Õ(nω) time complexity. Dor, Halperin and
Zwick [8] gave a combinatorial algorithm3 for +2-APSP in Õ(n7/3) time, which is faster than Seidel’s exact APSP
algorithm (for the current value of ω). Over two decades later, Deng, Kirkpatrick, Rong, Vassilevska Williams,
and Zhong [7] improved the time complexity to O(n2.2867). Their key idea was to use Euler tours to design a
black-box reduction to the bounded-difference (min,+)-product problem, which is known to have sub-cubic time
algorithms [5, 6].4 Dürr [10] further improved the +2-APSP time complexity to O(n2.259) by developing faster
algorithms for rectangular bounded-difference (min,+)-product.

For +2k-APSP (k ≥ 2), Dor, Halperin and Zwick [8] gave faster combinatorial algorithms running in
Õ(n2+ 1

3k−1 ) time. Saha and Ye [13] improved [8]’s +2k-APSP algorithms by refining the Euler-tour idea of
[7] and the original analysis of [8]. (See Table 1.1.)

1.1 New Results In this paper, we give improved algorithms for +2,+4, and +6-APSP. In addition to
quantitative improvements, our algorithms also simplify previous approaches in the sense that we no longer need to
invoke the big hammer of bounded-difference (min,+)-product algorithms. We prove the following two theorems.

Theorem 1.1. +2-APSP in an n-node unweighted undirected graph can be solved by a randomized algorithm
in O(n2.22548) time.

Our algorithm for Theorem 1.1 uses rectangular matrix multiplication. If one only uses square matrix
multiplication, the running time of Theorem 1.1 would be Õ(n2+ω−1

ω+3 ). Thus, the running time will beat Seidel’s
Õ(nω) time bound as long as ω >

√
5 ≈ 2.236.

If ω = 2, our running time would be Õ(n2.2). In contrast, Dürr’s [10] algorithm runs in Õ(n2+ω−1
2ω ) time in

terms of ω and hence if ω = 2, its running time would be Õ(n2.25) and thus would still be slower than ours even
with optimal matrix multiplication bounds.

Theorem 1.2. +2k-APSP in an n-node unweighted undirected graph can be solved by a deterministic
algorithm in O(n2+x/(k+1)) time, when x is the solution to 1 + x = ω(1− k−1

k+1x, 1− x, k
k+1x). (See the definition

of the rectangular matrix multiplication exponent ω(·, ·, ·) in Section 2.)

The result statement of Saha and Ye [13] differs from ours only in the equation defining x. Theirs has the
form 1 + 2x = ω(1− k−1

k+1x, 1− x,1− k−2
k+1x), where the difference from ours appears in boldface.

The result of Theorem 1.2 gives a faster algorithm than the combinatorial +2k-approximation of Dor, Halperin
and Zwick [8] for every k. Our algorithm uses only matrix multiplication, without the more complex algebraic
tools used in the work of Saha and Ye [13]. However, the running time is faster than the best known one of Saha
and Ye only for k = 2, 3 (additive +4 and +6 approximation). The results are summarized in Table 1.1, where
all running times (ours and prior work) are computed using the code of [4] updated with the newest rectangular
matrix multiplication bounds [2].

+2k-Additive Approximation for APSP
2k [8] (combinatorial) [10] [13] This work
2 n2+1/3 ≤ n2.334 n2.25899 n2.22548

4 n2.2 n2.15492 n2.14613

6 n2.125 n2.102926 n2.102595

8 n2+1/11 ≤ n2.0910 n2.077270 n2.079072

Table 1.1: Comparison with previous results for +2k-APSP.

3As is typical in the literature, we informally refer to algorithms that do not use fast matrix multiplication as combinatorial
algorithms.

4More specifically, [7] used fast algorithms that compute the (min,+)-product C[i, j] = mink{A[i, k] + B[k, j]} of two input
integer matrices A,B, where A is column bounded-difference, i.e., |A[i, j] − A[i + 1, j]| ≤ O(1) for all valid (i, j)’s, and B is row
bounded-difference, i.e., |B[i, j]−B[i, j + 1]| ≤ O(1) for all valid (i, j)’s.
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1.2 Further Related Works A closely related problem is multiplicative approximate APSP. In un-
weighted undirected graphs, an +2-approximation for APSP automatically yields 2-multiplicative approximation,
so it is an easier problem. The fastest known algorithm for 2-multiplicative approximate APSP runs in O(n2.0319)

time [9, 13], improving the previous Õ(n2.25)-time algorithm by [12]. The main open question in this line of
research is to achieve O(n2+o(1)) time for 2-multiplicative approximate APSP. See [11] for very recent progress
on this question.

1.3 Technical Overview For a few decades, the +2k-approximate APSP algorithm of Dor, Halperin, and
Zwick [8] was the fastest known additive APSP approximation. The core idea of this algorithm is selecting a series
of degree thresholds 1 = d0 < d1 < d2 < . . . < dk and sampling hitting sets S1, . . . , Sk of size |Si| = Õ(n/di) that
hit the neighborhoods of all vertices of degree ≥ di, for every i.

We first compute the distances out of every vertex in the smallest hitting set Sk, to compute a correct distance
estimate d̃(u, v) = d(u, v) for any u ∈ Sk, v ∈ V . Next, we compute the distances out of every vertex in Sk−1.
However, we can’t afford to use the full edge set, so instead we only search on the edge set Ek−1, consisting of
edges adjacent to vertices of degree < dk and an edge from every vertex of degree ≥ dk to a neighbor in Sk.
Additionally, when running Dijkstra’s algorithm from a vertex u, we include edges from u to every vertex v ∈ Sk

weighted by the current distance estimate computed between them in the previous round.
Now, for any u ∈ Sk−1, v ∈ V , if the shortest path between them contains only vertices of degree < dk, then

d̃(u, v) = d(u, v) since the entire shortest path between them was included in the Dijkstra search. Otherwise, let
w be the last vertex on the path from u to v of degree ≥ dk. There exists a vertex s ∈ Sk such that (s, w) ∈ Ek−1.
Thus, since the path from w to v is also included in Ek−1, our search out of u considers the path u → s → w ⇝ v
of weight d̃(u, s) + 1 + d(w, v). Since s ∈ Sk we have that d̃(u, s) = d(u, s) ≤ d(u,w) + 1 and conclude that
d̃(u, v) ≤ d(u, v) + 2.

We can now iterate this idea. We run Dijkstra’s out of every vertex u ∈ Sk−2 on the edge set Ek−2 consisting
of edges adjacent to vertices of degree < dk−1 and edges connecting vertices of degree ≥ dk−1 to a neighbor of
their in Sk−1, in addition to an edge out of u to every vertex v weighted by the current best distance estimate
between the pair. The same argument shows that all distance estimates computed out of Sk−2 will be within +4
of the true distance. Repeating this argument grows the additive error by +2 with every iteration, resulting in a
+2k error for distances computed out of S0 = V .

Balancing the degree thresholds gives a running time of Õ(n2−1/(k+1)m1/(k+1)), which is the best known
running time for sparse approximate APSP. However, for dense graphs Dor, Halperin and Zwick introduce
additional edges to the graph search that improve the additive approximation to < 2k, while keeping a running
time of Õ(n2+1/(k+1)).

Recent work has sought to improve the dense approximate APSP algorithm using fast matrix multiplication.
Deng et al. [7] noted that for a +2-approximation, we can avoid running Dijkstra’s out of V = Sk−1 by considering
two cases. For pairs of vertices such that the shortest path between them contains only vertices of degree < d1, run
the sparse approximate APSP algorithm of Dor, Halperin and Zwick. For the remaining pairs, they show how to
compute the distances out of S1 in Õ(n2) time and then compute d̃(u, v) = mins∈S1 d(u, s) + d(s, v) ≤ d(u, x) + 2
using the (min,+) product.

In general, the (min,+)-product (likely) cannot be solved polynomially faster than brute force, as it is
equivalent to the APSP problem. However, the authors of [7] showed that one can sort the vertices of the graph
in a way (based on the Euler tour of a spanning tree) that the resulting matrices are column/row-bounded-difference
matrices. For such matrices, there exists a subcubic time algorithm for computing their (min,+)-product. The
following work of Dürr [10] used faster rectangular (min,+)-product to speed up the +2 additive approximation.

Saha and Ye [13] used this same idea to improve the general +2k-approximation. Their algorithm replaces
the first two stages of Dijkstra’s searches with a call to sparse approximate APSP and a (min,+)-product of the
matrices representing the distances between Sk−1, Sk and Sk, Sk−2.

In this paper, we introduce a new way to speed up the (min,+)-product computation. Instead of using
the subcubic, but still considerably slow and complicated, bounded-difference (min,+)-product, we reduce the
problem to a (min,+)-product with entries bounded by a constant. Due to a standard reduction (e.g. [15]), such
a product can be computed in fast matrix multiplication time.

To achieve this, we introduce a new graph decomposition technique which decomposes the graph into a small
number of clusters of constant diameter and a remainder of low degree vertices. We then compute the (min,+)-
product on each cluster independently. As all vertices in the cluster are within constant distance of each other, we
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can shift the values of the corresponding distance matrix such that the resulting matrix is bounded by a constant.
This allows us to compute distances between pairs of vertices in the clusters. To extend our approximation to the
vertices in the remainder, we run a sparse graph search out of every vertex on just the low degree edges adjacent
to vertices in the remainder.

1.4 Organization In Section 2 we prove the general decomposition lemma which we will later use in all
of our algorithms. In Section 3 we prove Theorem 1.1 in two stages, beginning with a slower, simpler, ‘warm up’
algorithm that already beats the current state of the art algorithm for +2-APSP. Finally, in Section 4 we prove
Theorem 1.2 by extending the simpler algorithm of Section 3 to a general +2k-approximation. We conclude with
open questions in Section 5.

2 Preliminaries Let [n] = {1, 2, . . . , n}. Let G = (V,E) be an undirected graph and U ⊆ V be a vertex
subset. Let G[U ] denote the subgraph of G induced by U . Let degG(u) denote the degree of vertex u in graph G.
Let dG(u, v) denote the distance between vertices u and v in graph G, and let PG(u, v) denote the shortest path
from u to v, including the endpoints u, v (if more than one shortest path exists, for convenience we pick one that
maximizes maxx∈PG(u,v) degG(x)). Let diamG(U) denote the (weak) diameter of the vertex subset U , defined as
diamG(U) = maxu,v∈U dG(u, v). We omit the subscript G and simply write deg(u), diam(U), d(u, v) and P (u, v)
when the underlying graph G is clear from the context.

For a path P , let |P | denote the length of P (in unweighted graphs, |P | equals the number of edges in P ).
We call a distance estimate d̃(u, v) an additive +C-approximation if for every pair u, v ∈ V the estimate

satisfies d(u, v) ≤ d̃(u, v) ≤ d(u, v) + C.
In our algorithms we use the following (combinatorial) algorithm for sparse additive approximate APSP by

Dor, Halperin, and Zwick [8].

Lemma 2.1 ([8]). +2k-Approximate APSP on an n-node m-edge unweighted undirected graph can be solved
in Õ(n2−1/(k+1)m1/(k+1)) time.

We will use this lemma on paths containing vertices of bounded degree, in which case we obtain the following
corollary by considering the O(nd) edges adjacent to vertices of degree ≤ d.

Corollary 2.2. +2k-Approximate APSP between pairs of points such that a shortest path between them uses
only vertices of degree ≤ d can be solved in Õ(n2d1/(k+1)) time.

A standard tool used in these algorithms is the hitting set, as defined in the following lemma.

Lemma 2.3 (Hitting set, e.g., [1, Theorem 2.7]). Given an n-node undirected graph G = (V,E) and a degree
threshold 1 ≤ d ≤ n, one can deterministically construct in O(n2) time a hitting set S ⊆ V of size O(n logn

d ) such
that every node u ∈ V of degree at least d in G is adjacent to some s ∈ S.

Let MM(n1, n2, n3) denote the time complexity of multiplying an n1 × n2 matrix by an n2 × n3 matrix. We
denote by ω(γ1, γ2, γ3) the exponent of MM(nγ1 , nγ2 , nγ3), i.e. the minimum value c such that the product of an
nγ1 × nγ2 matrix by an nγ2 × nγ3 matrix can be computed in O(nc+ε) time for any ε > 0.

A common matrix product used in shortest path computation is the (min,+)-product, defined as follows.

Definition 2.4 ((min,+)-matrix product). The (min,+)-product of two matrices A,B is defined as C = A⋆B
where C[i, j] := mink A[i, k] +B[k, j].

When the entries of the matrices are bounded by an integer L, a standard method which encodes the entries
as polynomials of degree O(L) allows to compute their (min,+)-product in fast matrix multiplication time (see
e.g. [15]).

Lemma 2.5 ([15]). Given an n1 × n2 matrix A and an n2 × n3 matrix B such that entries of both matrices
are in {0, 1, . . . , L,∞}, computing C = A ⋆ B can be done in time Õ(L ·MM(n1, n2, n3)).

2.1 A Decomposition Lemma Next, we prove the following decomposition lemma, which is a key
component in our new approximation algorithms. The lemma shows that for any threshold d we can decompose
our graph into disjoint clusters of size greater than d with constant diameter. The remaining vertices that are
not assigned to clusters will all have degree smaller than d. While the decomposition itself is quite simple, the
bounded diameter of the resulting clusters making up the graph is crucial in allowing for faster computation of
their approximate shortest paths.
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Lemma 2.6. Let 1 ≤ d ≤ n. Given an m-edge undirected unweighted graph G = (V,E), in O(m) time we can
deterministically decompose V into a disjoint union R ∪

⋃h
i=1 Hi such that:

• |Hi| > d for all i ∈ [h].

• diam(Hi) := maxu,v∈Hi
dG(u, v) ≤ 4 for all i ∈ [h].

• degG(u) < d for all u ∈ R.

Proof. We begin constructing the clusters iteratively. Initialize U = V . While there exists u ∈ U such that
degG[U ](u) ≥ d, create a new cluster H ′

i containing u and all of u’s neighbors in U . Remove the vertices of H ′
i

from U and iterate until no vertex in G[U ] has degree ≥ d and we have created h clusters H ′
1, . . . ,H

′
h. Note that

by taking H ′
i to be the neighborhood of a high degree vertex we guarantee that |H ′

i| > d and diam(H ′
i) ≤ 2.

Next, beginning with i = 1 and iterating over the clusters, we define H ′′
i to be the vertices in U that are

adjacent to a vertex in H ′
i, and remove H ′′

i from U . We return Hi := H ′
i ∪ H ′′

i and set R to be the remaining
vertices in U at the end of this process.

When we can no longer create new clusters at the first stage, we have that every vertex u ∈ U has < d
neighbors in U . Thus, for every u ∈ U , if degG(u) ≥ d, it must have a neighbor in H ′

i for some i ∈ [h] and so
this vertex will have been added to H ′′

i and removed from U . We conclude that all vertices u ∈ R have degree
degG(u) < d. Finally, since diam(H ′

i) ≤ 2 and all vertices in H ′′
i are adjacent to H ′

i we have that diam(Hi) ≤ 4
for every i ∈ [h]. Since |H ′

i| > d we also have that |Hi| > d.

2.2 A Min-Plus Lemma Lastly, we prove the following lemma about computing the (min,+) product of
a matrix representing the distances from a set of low diameter.

Lemma 2.7. Let integer parameter L ≥ 1. Given input matrices A ∈ Zn1×n2 and B ∈ Zn2×n3 such that
|B[k, j] − B[k, j′]| ≤ L for all k ∈ [n2] and all j, j′ ∈ [n3], we can compute the (min,+)-product of A and B in
Õ(L ·MM(n1, n2, n3)) time.

Proof. For k ∈ [n2], let ∆k := minj∈[n3] B[k, j], and define matrix B′ ∈ Zn2×n3 by B′[k, j] := B[k, j] − ∆k.
Then, all entries of B′ are in {0, 1, . . . , L}. Define matrix A′ ∈ Zn1×n2 by A′[i, k] := A[i, k] + ∆k. Then the
(min,+)-product of A and B equals the (min,+)-product of A′ and B′, so it suffices to compute the latter (and
we denote the answer by C ∈ Zn1×n3).

For i ∈ [n1], let mi := mink∈[n2] A
′[i, k]. Then, since 0 ≤ B′[k, j] ≤ L, we have C[i, j] = mink∈[n2]{A′[i, k] +

B′[k, j]} ∈ [mi,mi + L] for all i, j. Thus, if A′[i, k0] > mi + L, then A′[i, k0] is useless since A′[i, k0] +B′[k0, j] >
C[i, j] for all j, so we can replace the entry A′[i, k0] by +∞ without changing the (min,+)-product of A′ and
B′. Then, every entry A′[i, k] is either +∞ or in [mi,mi + L]. Define the matrix A′′ ∈ Zn1×n2 by A′′[i, k] :=
A′[i, k] − mi ∈ {0, 1, . . . , L,+∞}. We compute the (min,+)-product C ′′ between A′′ ∈ {0, 1, . . . , L,+∞}n1×n2

and B′ ∈ {0, 1, . . . , L}n2×n3 in Õ(L ·MM(n1, n2, n3)) time using Lemma 2.5.
Finally, return the answer matrix C[i, j] = C ′′[i, j] +mi.

3 Faster +2-Approximate APSP

3.1 A Warm-Up Algorithm Now we describe our algorithms for computing +2-Approximate APSP
based on the decomposition given in Lemma 2.6. In this section we present a warm-up algorithm (Corollary 3.2)
which already improves over the state-of-the-art algorithms [7, 10]. In the next section we will give further
improvement using more technical ideas.

We use a standard argument (which was also used in [7, 10]) that assumes the nodes on the (true) shortest
paths under consideration have maximum degree Θ(D). More specifically, we will prove the following main lemma:

Lemma 3.1. Let G = (V,E) be an n-vertex undirected unweighted graph, and parameter 1 ≤ D ≤ n. Let
dD(u, v) denote the minimum length of any (not necessarily simple) path P from u to v such that maxx∈P deg(x) ∈
[D, 2D]. We can compute distance estimates d̃(u, v) such that d(u, v) ≤ d̃(u, v) ≤ dD(u, v) + 2 holds for all
(u, v) ∈ V 2, by a deterministic algorithm with time complexity

Õ

(
min

1≤d<D

{
n2d+

n

d
MM

(
n,

n

D
, d
)})

.

We analyze the overall time complexity for +2-Approximate APSP obtained from Lemma 3.1:
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Corollary 3.2 (Warm-Up +2-APSP). +2-Approximate APSP has a deterministic algorithm in O(n2.2548)
time.

Proof. We enumerate 1 ≤ D ≤ n that are powers of two, and compute distance estimates d̃(u, v) ∈
[d(u, v), d(u, v)+ 2] for pairs (u, v) satisfying maxx∈P (u,v) deg(x) ∈ [D, 2D] (note that dD(u, v) = d(u, v) holds for
such u, v). Finally we combine the answers across all D. Then, for given D, we can without loss of generality
assume the input graph has maximum degree at most 2D, and hence number of edges at most Dn. We run either
Lemma 3.1 or Corollary 2.2 (whichever is faster) to compute the distance estimates. The time complexity of
Corollary 2.2 is Õ(n2

√
D). The overall time complexity for +2-APSP is thus

Õ

(
max

1≤D≤n
min

{
n2

√
D, min

1≤d<D

{
n2d+

n

d
MM

(
n,

n

D
, d
)}})

.

Using current fastest algorithms for rectangular matrix multiplication [2], the time complexity can be bounded
by n2.2548 [4].

If we only use square matrix multiplication, then in the above expression it is optimal to pick d =
(n/D)1/(4−ω) ≤ n/D, so the time complexity becomes

Õ(max
D

min{n2
√
D,n2d+ n

d · (n/d)( n
D/d)dω}) = Õ(max

D
min{n2

√
D,n2( n

D )1/(4−ω)}) = Õ(n2+ 1
6−ω ).

Now we describe our algorithm for given degree parameter D:

Proof of Lemma 3.1. Without loss of generality, we can assume the input graph G = (V,E) has maximum
degree at most 2D, and hence number of edges m ≤ Dn.

Deterministically construct a hitting set (Lemma 2.3) S ⊂ V of size O(n logn
D ) such that every x ∈ V with

deg(x) ≥ D is adjacent to some vertex sx ∈ S. Thus, if dD(u, v) is realized by the path P which connects u, v
and contains a vertex x of degree deg(x) ≥ D, then

(3.1) d(u, v) ≤ min
s∈S

{d(u, s) + d(s, v)} ≤ d(u, sx) + d(sx, v) ≤ d(u, x) + 1 + d(x, v) + 1 = dD(u, v) + 2.

We run BFS from every s ∈ S on G to compute d(s, u) for all (s, u) ∈ S×V , in total time O(|S|m) ≤ Õ(n/D)·Dn =

Õ(n2).
Let 1 ≤ d < D be a tunable parameter. Run Lemma 2.6 with parameter d, and obtain the vertex partition

V = R ∪
⋃h

i=1 Hi, where each cluster Hi has size |Hi| ≥ d and (weak) diameter diam(Hi) ≤ 4. For convenience,
we assume without loss of generality that |Hi| ≤ 2d for all i (by possibly breaking larger clusters into smaller
ones, which does not increase their weak diameter), and we still have h = O(n/d) clusters in total.

For each cluster Hi, we compute d̃[V,Hi] as the (min,+) product between the distance matrices d[V, S] and
d[S,Hi] using Lemma 2.7. Note that the parameter L in Lemma 2.7 can be bounded using the triangle inequality
by L = maxs∈S,v,v′∈Hi

|d(s, v) − d(s, v′)| ≤ maxs∈S,v,v′∈Hi
d(v, v′) = diam(Hi) ≤ O(1). Thus, the total time for

invoking Lemma 2.7 over all h = O(n/d) clusters is

O
(n
d

)
· Õ

(
L ·MM(|V |, |S|, |Hi|)

)
= Õ

(n
d
MM(n, n/D, d)

)
.

By Equation (3.1), d̃(v, h) (i.e., the (v, h)-th entry in the (min,+)-product between d[V, S] and d[S,Hi]) is a
+2-approximation of dD(v, h), so we have already computed the desired answers for pairs (v, h) ∈ V ×

⋃h
i=1 Hi.

It remains to compute answers for the pairs (v, r) ∈ V ×R.
We enumerate each v ∈ V , and compute answers for the pairs v ×R using the following lemma:

Lemma 3.3. For v ∈ V , suppose for all w ∈ V \ R we know distance estimates d̃(v, w) such that
d(v, w) ≤ d̃(v, w) ≤ dD(v, w) + 2. Then, in Õ(nd) time, we can compute distance estimates d̃(v, w) such that
d(v, w) ≤ d̃(v, w) ≤ dD(v, w) + 2, for all w ∈ V .

Proof. Define a (weighted) auxiliary graph Gv on the same vertex set V as follows:

• For every r ∈ R, include all the neighboring edges of r into Gv. Since degG(r) < d by Lemma 2.6, we have
added

∑
r∈R degG(r) ≤ |R|d ≤ nd edges.
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• For every h ∈
⋃h

i=1 Hi, add an edge into Gv between v and h with edge weight d̃(v, h). This step adds only
≤ n edges to Gv.

Then, use Dijkstra’s algorithm to compute the distances from v to all vertices on Gv in Õ(|E(Gv)|) = Õ(nd)
time, and return these results as our distance estimates d̃(v, r) for all r ∈ R. By construction of Gv, it is
clear that dGv (v, r) does not underestimate the true distance dG(v, r), so it remains to prove that they achieve
+2-approximation.

Suppose dD(v, r) is realized by the path P from v to r with maxx∈P deg(x) ≥ D. If all vertices on
P are contained in R, then by construction of Gv, all edges on the path P (v, r) are included in Gv, so
dGv (v, r) ≤ dD(v, r) < dD(v, r) + 2 as claimed. It remains to consider the case where P is not fully contained in
R. Let h be the last vertex on P such that h /∈ R (we know h exists and h ̸= r ∈ R). Let r1, r2, . . . , r be the
vertices after h on the path P . Then, r1, r2, . . . , r ∈ R by definition of h. By construction of Gv, this means the
edges on the suffix Phr = h → r1 → r2 → · · · → r of the path P are included in Gv. Since Gv also contains edge
(v, h) of weight d̃(v, h), we obtain

dGv
(v, r) ≤ d̃(v, h) + |Phr| ≤ (dD(v, h) + 2) + |Phr| ≤ dD(v, r) + 2

as desired, where the second inequality follows from the input assumption and h ∈ V \R, and the last inequality is
justified as follows: Recall maxx∈P deg(x) ∈ [D, 2D], whereas the vertices after h on path P , namely r1, r2, . . . , r,
all belong to R and hence have degree < d < D. Therefore, the prefix v ⇝ h of the path P contains a node of
degree in [D, 2D], which implies dD(v, h) ≤ dD(v, r)− |Phr| as required.

The total time of applying the above Lemma 3.3 for all v ∈ V is Õ(n2d). This finishes the proof of Lemma 3.1.

3.2 A Faster Algorithm In the previous algorithm, we separately computed the (min,+)-product
between d[V, S] and d[S,Hi] for every cluster Hi. In this section, we obtain a speed-up by considering all clusters
together. More specifically, the first step of our improved algorithm is to efficiently compute the (min,+)-product
between d[

⋃h
i=1 Hi, S] and d[S,

⋃h
i=1 Hi]. This step uses the technique of false positives mod prime, which was

also a crucial ingredient in the state-of-the-art bounded-difference (min,+)-product algorithm [6]. This step can
be formalized as the following technical lemma:

Lemma 3.4. Let integer parameter L ≥ 1. Let A ∈ Zhd×s, B ∈ Zs×hd be input matrices with entries in
[−U,U ]. Partition the indices i ∈ {1, 2, . . . , hd} into h contiguous groups each of size d (so that i belongs to the
⌈i/d⌉-th group).

Suppose |A[i, k]−A[i′, k]| ≤ L holds for all k ∈ [s] and all i, i′ in the same group, and |B[k, j]−B[k, j′]| ≤ L
holds for all k ∈ [s] and all j, j′ in the same group.

Then, for any parameter q ≥ 1, we can compute the (min,+)-product of A and B by a randomized algorithm
in time complexity

Õ
(
h2s+ qL ·MM(hd, s, hd) + h2L ·MM(d, s/q, d)

)
· poly log(U).

Proof. Throughout, we use the shorthand î = ⌈i/d⌉ and ĵ = ⌈j/d⌉ to denote the groups that contain indices
i and j respectively.

Let C ∈ Zhd×hd denote the (min,+)-product of A and B which we want to compute. We first efficiently
compute an O(L)-additive approximation of C as follows: Define matrix A′ ∈ Zh×s by

A′ [̂i, k] :=

⌊
1
L min

(̂i−1)d<i≤îd
A[i, k]

⌋
,

and define matrix A′′ ∈ Zhd×s by

(3.2) A′′[i, k] := A[i, k]− L ·A′ [̂i, k].

Then, observe that the input assumption on A implies

(3.3) 0 ≤ A′′[i, k] < 2L
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for all i ∈ [hd] and k ∈ [s]. We define matrices B′ ∈ Zs×h and B′′ ∈ Zs×hd analogously with

(3.4) B′′[k, j] := B[k, j]− L ·B′[k, ĵ],

and

(3.5) 0 ≤ B′′[k, j] < 2L

for all k ∈ [s], j ∈ [hd]. We compute C ′ ∈ Zh×h as the (min,+)-product of A′, B′ by brute force in time O(h2s).
From Equations (3.3) and (3.5) we can observe that C ′ provides an O(L)-additive approximation of the true
(min,+)-product C in the sense that

(3.6) 0 ≤ C[i, j]− L · C ′ [̂i, ĵ] < 4L

holds for all i, j ∈ [hd]. Thus, if k is a witness for C[i, j] (i.e., A[i, k] +B[k, j] = C[i, j]), then∣∣∣A′ [̂i, k] +B′[k, ĵ]− C ′ [̂i, ĵ]
∣∣∣ = 1

L

∣∣∣−A′′[i, k]−B′′[k, j] +A[i, k] +B[k, j]− L · C ′ [̂i, ĵ]
∣∣∣

=
1

L

∣∣∣−A′′[i, k]−B′′[k, j] + C[i, j]− L · C ′ [̂i, ĵ]
∣∣∣

< 4,(3.7)

where the last step follows from Equations (3.3), (3.5), and (3.6).
Pick a random prime p ∈ Θ(q logU). Define an hd × s matrix Ã where each entry is a bivariate monomial

defined as
Ã[i, k] := xA′ [̂i,k] mod pyA

′′[i,k],

which has x-degree less than p = O(q logU) and y-degree less than 2L (by Equation (3.3)). Define s× hd matrix
B̃ analogously. Compute hd× hd matrix C̃ as the product of Ã and B̃ via Fast Matrix Multiplication and FFT
(e.g., [15]) in Õ(MM(hd, s, hd) · (q logU) · (2L)) time, so

C̃[i, j] =
∑
k∈[s]

x(A′ [̂i,k]+B′[k,ĵ]) mod pyA
′′[i,k]+B′′[k,j].

Recall every witness k for C[i, j] satisfies Equation (3.7). In particular, k satisfies the following mod-p version
of Equation (3.7):

(3.8) A′ [̂i, k] +B′[k, ĵ] ∈ C ′ [̂i, ĵ] + {−3, . . . , 3} (mod p).

Hence k contributes a term in the polynomial C̃[i, j] with x-degree in C ′ [̂i, ĵ] + {−3, . . . , 3} (mod p). We say a
triple (̂i, k, ĵ) ∈ [h]× [s]× [h] is a false positive if it does not satisfy Equation (3.7), but satisfies Equation (3.8).
Then, for every (i, j) ∈ [hd]× [hd], compute the polynomial

(3.9) C̃[i, j]−
∑

k:(̂i,k,ĵ) is a false positive

x(A′ [̂i,k]+B′[k,ĵ]) mod pyA
′′[i,k]+B′′[k,j].

We describe how to compute these polynomials later.
Consider each (i, j) ∈ [hd] × [hd]. We enumerate every non-zero xc′yc

′′
term in the polynomial Equa-

tion (3.9) that satisfies c′ ∈ C ′ [̂i, ĵ] + {−3, . . . , 3} (mod p). Then, this term must originate from some
x(A′ [̂i,k]+B′[k,ĵ]) mod pyA

′′[i,k]+B′′[k,j] where A′ [̂i, k]+B′[k, ĵ] equals the unique integer in C ′ [̂i, ĵ]+{−3, . . . , 3} that
is congruent to c′ modulo p (since the contribution from false positives has been removed), and A′′[i, k]+B′′[k, j] =
c′′. Then, the corresponding value of A[i, k] +B[k, j] can be recovered via Equations (3.2) and (3.4) as

A[i, k] +B[k, j] = L · (A′ [̂i, k] +B′[k, ĵ]) + (A′′[i, k] +B′′[k, j]),

and we use it to update the candidate answer for C[i, j]. This algorithm correctly computes all C[i, j] since all
potential witnesses k for each C[i, j] have been considered.
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Now it remains to analyze the total time complexity for computing the polynomial in Equation (3.9) for
all (i, j) ∈ [hd] × [hd]; since the first term C̃[i, j] is already computed, we focus on computing the second term
(summation over k) in Equation (3.9). For î, ĵ ∈ [h], r ∈ {−3, . . . , 3}, define set (which can be computed in O(h2s)
time by brute force enumeration)

Fî,ĵ,r :=
{
k ∈ [s] : (̂i, k, ĵ) is a false positive and A′ [̂i, k] +B′[k, ĵ] ≡ C ′ [̂i, ĵ] + r (mod p)

}
.

Fix (̂i, ĵ) ∈ [h]× [h]. The second term in Equation (3.9) for any (i, j) ∈ ((̂i−1)d, îd]× ((ĵ−1)d, ĵd] can be written
as ∑

r∈{−3,...,3}

x(C′ [̂i,ĵ]+r) mod p
∑

k∈Fî,ĵ,r

yA
′′[i,k] · yB

′′[k,j].

We can compute this for all (i, j) ∈ ((̂i − 1)d, îd] × ((ĵ − 1)d, ĵd] using matrix multiplications of dimension
d × |Fî,ĵ,r| × d for r ∈ {−3, . . . , 3} where each entry is a degree-O(L) univariate polynomial in y, in time∑

r∈{−3,...,3} Õ(MM(d, |Fî,ĵ,r|, d) · L). Note that k ∈ Fî,ĵ,r holds only if p is a prime factor of the non-zero
integer A′ [̂i, k] + B′[k, ĵ] − C ′ [̂i, ĵ] − r, which happens with probability (over random prime p ∈ Θ(q logU)) at
most O(1/q) by the prime number theorem. Hence, by linearity of expectation and Markov’s inequality, for fixed
(̂i, ĵ) ∈ [h]2, we have

∑
r∈{−3,...,3} |Fî,ĵ,r| = O(s/q) with ≥ 0.99 success probability. In this successful case, the

time for computing Equation (3.9) (which then allows to compute C[i, j]) for all (i, j) ∈ ((̂i−1)d, îd]×((ĵ−1)d, ĵd]

becomes Õ(MM(d, s/q, d) ·L). The total time over all (̂i, ĵ) ∈ [h]2 is Õ(h2 MM(d, s/q, d) ·L). We repeat the whole
process O(log h) times with independent random primes p, so that with high probability every (̂i, ĵ) ∈ [h]2 is
successful at least once.

The total time is Õ(h2s+MM(hd, s, hd) · (q logU) · (2L) + h2 MM(d, s/q, d) · L) as claimed.

Now we use Lemma 3.4 to prove the following lemma:

Lemma 3.5. Let G = (V,E) be an n-vertex undirected unweighted graph, and parameter 1 ≤ D ≤ n. Let
dD(u, v) denote the minimum length of any (not necessarily simple) path P from u to v such that maxx∈P deg(x) ∈
[D, 2D]. We can compute distance estimates d̃(u, v) such that d(u, v) ≤ d̃(u, v) ≤ dD(u, v) + 2 for all (u, v) ∈ V 2,
by a randomized algorithm with time complexity

Õ

(
min

1≤d<D,q≥1

{
n2d+

(n
d

)2

· n
D

+ q ·MM
(
n,

n

D
, n

)
+
(n
d

)2

·MM

(
d,

n

Dq
, d

)})
.

Proof sketch. The first few steps are identical to the proof of Lemma 3.1: We have a hitting set S ⊂ V of size
|S| = Õ(n/D) and we compute d(s, u) for all (s, u) ∈ S × V . We obtain the vertex partition V = R ∪

⋃h
i=1 Hi

where |Hi| = Θ(d),diam(Hi) = L = O(1) and maxr∈R deg(r) ≤ d. Here 1 ≤ d < D and h = O(n/d).
Then, we use Lemma 3.4 to compute the (min,+)-product of the distance matrices d[

⋃h
i=1 Hi, S] and

d[S,
⋃h

i=1 Hi]. The time complexity of Lemma 3.4 is (where q ≥ 1 is a tunable parameter)

Õ

((n
d

)2

· n
D

+ q ·MM
(
n,

n

D
, n

)
+
(n
d

)2

·MM

(
d,

n

Dq
, d

))
.

We now have +2-approximation of dD(u, v) for all (u, v) ∈
⋃h

i=1 Hi ×
⋃h

i=1 Hi = (V \R)× (V \R). Based on
these answers, use Lemma 3.3 to obtain +2-approximation of dD(u, v) for all (u, v) ∈ V × (V \ R), in total time
Õ(n2d), in an analogous way to the last part of the proof of Lemma 3.1. Then, based on these answers, again use
Lemma 3.3 to obtain +2-approximation of dD(u, v) for all (u, v) ∈ V × V in total time Õ(n2d).

Finally we analyze the overall time complexity obtained from Lemma 3.5:

Proof of Theorem 1.1. As before, we enumerate 1 ≤ D ≤ n that are powers of two, and compute distance
estimates d̃(u, v) ∈ [d(u, v), d(u, v) + 2] for pairs (u, v) satisfying maxx∈P (u,v) deg(x) ∈ [D, 2D] (note that
dD(u, v) = d(u, v) holds for such u, v). Finally we combine the answers across all D. Then, for given D, we
can without loss of generality assume the input graph has maximum degree at most 2D, and hence number of
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edges at most O(Dn). We run either Lemma 3.5 or Corollary 2.2 (whichever is faster) to compute the distance
estimates. The time complexity of Corollary 2.2 is Õ(n2

√
D). The overall time complexity for +2-APSP is thus

Õ

(
max

1≤D≤n
min

{
n2

√
D, min

1≤d<D,q≥1

{
n2d+

(n
d

)2

· n
D

+ q ·MM
(
n,

n

D
, n

)
+

(n
d

)2

·MM

(
d,

n

Dq
, d

)}})
.

We first show how to set the parameters d and q in terms of D when we only use square matrix multiplication.
We will show that we can set d and q such that n ≥ Ddq. If this is the case, for fixed D, the running time becomes

min

{
n2

√
D, min

1≤d<D,q≥1

{
n2d+

(n
d

)2

· n
D

+ q · nω

Dω−2
+

n3

Dd3−ωq

}}
.

Now, assuming that n ≥ Dd, set q = ( n
Dd )

3−ω
2 to balance the latter two terms in the running time above.

Verify that with this setting of q, n
Dd ≥ q, as needed.

The time complexity is now

min

{
n2

√
D, min

1≤d<D

{
n2d+

n3

d2D
+
( n3+ω

Dω−1d3−ω

)1/2
}}

.

Note that n2d ≥ n3

d2D iff d ≥ (n/D)1/3, and n2d ≥
(

n3+ω

Dω−1d3−ω

)1/2

iff d ≥ (n/D)
ω−1
5−ω ≥ (n/D)1/3. Hence to

minimize the running time, we set d = (n/D)
ω−1
5−ω which gives us a running time of

min
{
n2

√
D,n2 · (n/D)

ω−1
5−ω

}
.

We verify that this setting of d also gives us that n ≥ Ddq, as desired.
Finally, the running time is the maximum over all D ≤ n of the above quantity. The worst-case running time

is achieved when n2
√
D = n2 · (n/D)

ω−1
5−ω , i.e. when D = n

2ω−2
ω+3 . Thus, the final runtime for +2 APSP in terms

of ω is Õ(n2+ω−1
ω+3 ).

For the current value of ω, ω < 2.371339 [2], the bound is n2.25531. As ω goes to 2 the runtime goes to n2.2,
and the exponent 2 + ω−1

ω+3 is smaller than ω if ω >
√
5 ≈ 2.236.

To bound the running time using rectangular matrix multiplication we proceed as follows. Let D = nb, d =
nδ, q = nz and minimize

max{2 + b/2, 2 + δ, 3− 2δ − b, z + ω(1, 1− b, 1), 2− 2δ + ω(δ, 1− z − b, δ)}.

We use the code of [4] updated with the newest rectangular matrix multiplication bounds [2] and obtain that
b = 0.45095703, δ = 0.22547851, z = 0.15981814 gives running time O(n2.225479).

4 Faster +2k-Approximate APSP In this section we use the clustering technique introduced in
Subsection 2.1 to construct a new algorithm for +2k-approximate APSP, resulting in a faster runtime for +4
and +6-approximate APSP. We note that for additive error of +8 and up this approach is no longer faster than
that of Saha and Ye [13]. We prove Theorem 1.2.

Theorem 1.2. +2k-APSP in an n-node unweighted undirected graph can be solved by a deterministic
algorithm in O(n2+x/(k+1)) time, when x is the solution to 1 + x = ω(1− k−1

k+1x, 1− x, k
k+1x). (See the definition

of the rectangular matrix multiplication exponent ω(·, ·, ·) in Section 2.)

Using standard techniques as explained in Corollary 3.2, we can assume the maximum degree on the true
shortest path is Θ(D). We will use the following generalization of Lemma 3.1.

Lemma 4.1. Let G = (V,E) be an n-vertex undirected unweighted graph, U ⊂ V and parameter 1 ≤ D ≤
n. Denote dD(u, v) as the minimum length of any (not necessarily simple) path P from u to v such that
maxx∈P deg(x) ∈ [D, 2D]. We can compute distance estimates d̃(u, v) such that d(u, v) ≤ d̃(u, v) ≤ dD(u, v) + 2
for all u ∈ U, v ∈ V , by a deterministic algorithm with time complexity

Õ

(
min

1≤d<D

{
|U | · nd+ n

d
MM

(
|U |, n

D
, d
)})

.
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The proof of this lemma follows directly from the proof of Lemma 3.1, by restricting the (min,+)-products
and graph search to the subset U .

Next, assuming we have computed a +2-approximation for distances out of a hitting set U which hits the
neighborhood of all vertices of degree ≥ δ, we use the following lemma to extend these estimates to a +2k-
approximation to all distances.

Lemma 4.2. Let G = (V,E) be an n-vertex undirected unweighted graph and parameters 1 ≤ δ ≤ D ≤ n.
Let U ⊂ V be a hitting set of size |U | = Õ(n/δ) for the neighborhoods of vertices of degree ≥ δ. Given distance
estimates d̃(u, v) such that d(u, v) ≤ d̃(u, v) ≤ dD(u, v) + 2 for every pair u ∈ U, v ∈ V , we can compute distance
estimates d̃(u, v) such that d(u, v) ≤ d̃(u, v) ≤ dD(u, v) + 2k for all u, v ∈ V , by a deterministic algorithm with
time complexity

O(n2δ1/(k−1)).

Proof. Without loss of generality, assume G has maximum degree at most 2D. Define the degree thresholds
1 = d0 < d1 < . . . < dk−1 = δ by di = δi/(k−1). For every 1 ≤ i ≤ k − 2, deterministically construct a hitting set
Si of size |Si| = Õ(n/di) that hits the neighborhoods of all vertices of degree ≥ di (Lemma 2.3). Set Sk−1 = U ,
and S0 = V . For every 0 ≤ i ≤ k − 2, define the edge set Ei to include all edges adjacent to vertices of degree
< di+1. For every vertex v of degree ≥ di+1, include in Ei an edge connecting v to an arbitrary neighbor in Si+1.

Recall that we initially have distance estimates d̃(u, v) between u ∈ U, v ∈ V ; initialize d̃(u, v) to +∞ for the
remaining pairs. Beginning with i = k − 2 and going down to i = 0, run the following Dijkstra’s searches. For
every vertex u ∈ Si, add an edge from u to every v ∈ V of weight d̃(u, v). Run Dijkstra’s algorithm out of u on
the union of these edges and the edge set Ei. Update d̃ with the new distances computed.

Note that |Ei| = O(n · δ(i+1)/(k−1)) and so running |Si| Dijkstra’s searches (where 0 ≤ i ≤ k − 2) takes total
time

Õ(|Si| · (n+ |Ei|)) = Õ
( n

δi/(k−1)
· nδ(i+1)/(k−1)

)
= Õ

(
n2δ1/(k−1)

)
.

Assuming k = O(1), the total runtime of running all the searches is Õ(n2δ1/(k−1)). We are left to prove the bound
on the approximation error. We do so using the following inductive claim.

Claim 4.3. After searching out of Si, d(u, v) ≤ d̃(u, v) ≤ dD(u, v) + 2(k − i) for every u ∈ Si, v ∈ V .

Proof. All distances computed in the Dijkstra’s searches stem from true paths in the graph, so we always
have d̃(u, v) ≥ d(u, v). We now show the upper bound inductively.

For i = k − 1 we do not perform a search out of Sk−1 = U but rather use the provided distance estimates
that are guaranteed to have d̃(u, v) ≤ dD(u, v) + 2 = dD(u, v) + 2(k − i) as required.

Now, for 0 ≤ i ≤ k− 2, assuming the claim holds for Si+1, consider a vertex pair u ∈ Si, v ∈ V , and the path
P from u to v that realizes dD(u, v) with maxx∈P deg(x) ∈ [D, 2D]. Let w be the closest vertex to v on P with
deg(w) ≥ di+1 and let s ∈ Si+1 be a neighbor of w such that (s, w) ∈ Ei.

Since maxx∈P deg(x) ∈ [D, 2D], whereas all vertices beyond w on P have degree < di+1 ≤ dk−1 = δ ≤ D, we
have that maxx∈Puw

deg(x) ∈ [D, 2D], where Puw denotes the prefix of P up to node w. Appending node s to Puw

yields a path from u to s which has a highest degree in [D, 2D] and has length |Puw|+1 = dD(u, v)− d(w, v)+ 1.
Hence, dD(u, s) ≤ dD(u, v) − d(w, v) + 1. Since s ∈ Si+1, by the inductive hypothesis we conclude d̃(u, s) ≤
dD(u, s) + 2(k − i− 1) ≤ dD(u, v)− d(w, v) + 1 + 2(k − i− 1).

When running Dijkstra’s out of u ∈ Si we have an edge from u to s of weight d̃(u, s). Furthermore, the edge
(w, s) ∈ Ei, and the suffix of the path P from w to v is contained in Ei. Therefore,

d̃(u, v) ≤ d̃(u, s) + 1 + d(w, v) ≤ dD(u, v)− d(w, v) + 1 + 2(k − i− 1) + 1 + d(w, v) = dD(u, v) + 2(k − i),

which proves the claim.

Thus, after running Dijkstra’s out of V = S0 we have that d̃(u, v) ≤ dD(u, v) + 2k for every pair of vertices
u, v ∈ V .

We can now combine Lemma 4.1, Lemma 4.2 and Corollary 2.2 to prove Theorem 1.2.

Proof of Theorem 1.2. Enumerate over 1 ≤ D ≤ n that are powers of two and compute distance estimates
d̃(u, v) ∈ [d(u, v), d(u, v) + 2k] for pairs u, v satisfying maxx∈P (u,v) deg(x) ∈ [D, 2D] (note that dD(u, v) = d(u, v)
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holds for such u, v). Finally we combine the answers across all values of D by taking the minimum value of d̃(u, v)
computed for every pair, since we are guaranteed that for all values of D, the estimate computed is an upper
bound to the true distance.

Thus, for a given D, we can assume the given input graph has maximum degree at most 2D. We can compute
our distance estimate in one of the following two ways. First, we can use Corollary 2.2 to compute d̃(u, v) in time
Õ(n2D

1
k+1 ).

Otherwise, we can set a parameter δ ≤ D and deterministically construct a hitting set U of size Õ
(
n
δ

)
that

hits the neighborhood of all vertices of degree ≥ δ via Lemma 2.3. Using Lemma 4.1, compute distance estimates
d̃(u, v) such that d(u, v) ≤ d̃(u, v) ≤ dD(u, v) + 2 for every u ∈ U, v ∈ V . Next, use Lemma 4.2 to extend these
distance estimates to +2k-approximation for all pairs u, v ∈ V in time Õ(n2δ

1
k−1 ).

For every D, we can pick the faster of these two options. In total, our runtime comes out to

Õ

(
max

1≤D≤n
min

{
n2D

1
k+1 , n2δ

1
k−1 + min

1≤d≤D

{
n2d

δ
+

n

d
MM

(n
δ
,
n

D
, d
)}})

.

This expression is maximized when the two runtimes are equal, at which point let 0 ≤ x ≤ 1 be such that
D = Θ(nx). Set δ = n

k−1
k+1x and d = n

k
k+1x to obtain a running time of

Õ
(
n2+ 1

k+1x + n1− k
k+1x MM

(
n1− k−1

k+1x, n1−x, n
k

k+1x
))

.

To minimize this expression, we find the value of x for which

2 +
1

k + 1
x = 1− k

k + 1
x+ ω

(
1− k − 1

k + 1
x, 1− x,

k

k + 1
x

)
.

Equivalently 1 + x = ω(1− k−1
k+1x, 1− x, k

k+1x). Thus, we obtain a +2k-approximate APSP algorithm running in
time Õ(n2+ 1

k+1x) for the value of x satisfying 1 + x = ω(1− k−1
k+1x, 1− x, k

k+1x).

5 Open Problems A major open question is whether +2-approximate APSP can be solved in n2+o(1)

time. However this is unknown even for the much easier 2-multiplicative approximate APSP problem, which can
be solved in slightly superquadratic time using fast matrix multiplication techniques [9, 13].

The work of Dor, Halperin and Zwick [8] showed an Õ(n2) time algorithm for a + log n approximate APSP.
It remains open to determine if there exists a constant C such that +C-approximate APSP can be solved in
n2+o(1) time. One can also ask, can we solve +2-approximate APSP in Õ(nf(ω)) time, where function f(ω)
satisfies f(ω) < ω for all possible values of ω > 2? In other words, is +2-approximate APSP easier than matrix
multiplication?

In the scope of this work, we note that our +2k-approximation algorithm follows the idea of the sparse
approximate APSP algorithm of [8] in that it computes all distances out of each hitting set. In reality, for the
next step of the algorithm we are only interested in distances between a hitting set Si and the next hitting
set Si−1. The dense approximate APSP algorithm of [8] makes use of this distinction to speed up their sparse
algorithm. The work of Saha and Ye [13] also makes use of this fact when computing the bounded-difference
(min,+)-product between these hitting sets. However, in order to make use of this fact in our setting we would
need to be able to adapt our decomposition lemma (Lemma 2.6) to decompose a subset of the graph, and not the
entire vertex set. It remains open to determine if such a decomposition is possible.
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