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Abstract

The Memory Reallocation problem asks to dynamically maintain an assignment of given ob-
jects of various sizes to non-overlapping contiguous chunks of memory, while supporting updates
(insertions/deletions) in an online fashion. The total size of live objects at any time is guaran-
teed to be at most a 1−ϵ fraction of the total memory. To handle an online update, the allocator
may rearrange the objects in memory to make space, and the overhead for this update is defined
as the total size of moved objects divided by the size of the object being inserted/deleted.

Our main result is an allocator with worst-case expected overhead polylog(ϵ−1). This ex-
ponentially improves the previous worst-case expected overhead Õ(ϵ−1/2) achieved by Farach-
Colton, Kuszmaul, Sheffield, and Westover (2024), narrowing the gap towards the Ω(log ϵ−1)
lower bound. Our improvement is based on an application of the sunflower lemma previously
used by Erdős and Sárközy (1992) in the context of subset sums.

Our allocator achieves polylogarithmic overhead only in expectation, and sometimes performs
expensive rebuilds. Our second technical result shows that this is necessary: it is impossible to
achieve subpolynomial overhead with high probability.

1 Introduction

Memory allocation is one of the oldest problems in computer science, both in theory and in practice.
Consider an array of M memory slots indexed by {0, 1, . . . ,M −1}, and a dynamically changing

collection of objects X,1 where object x ∈ X has size µ(x) ∈ Z+. An allocation is an assignment
of the objects to non-overlapping contiguous regions in memory, or formally, an allocation map
ϕ : X → {0, 1, . . . ,M − 1} such that ϕ(x) + µ(x) ≤ M , and the intervals [ϕ(x), ϕ(x) + µ(x)) are
disjoint for all x ∈ X. An allocator needs to maintain the allocation while handling two types of
updates to X in an online fashion (starting from the initial state X = ∅):

• Inserting a new object x of size µ(x) into X (memory allocation).
• Deleting an object x ∈ X from X (memory deallocation / free).

We sometimes refer to objects currently in X as live objects for emphasis.
In the classic setting of memory allocation, objects cannot be moved after being allocated. Upon

inserting an object x, the allocator decides its location ϕ(x), and x continues to occupy the memory
interval [ϕ(x), ϕ(x) + µ(x)) until its deletion. After a few updates, the free space in memory may
become fragmented. When inserting a new object x, even though the total empty space is larger
than µ(x), there may be no contiguous region that fits it. This causes a waste of memory.

∗cejin@berkeley.edu. This work is supported by the Miller Research Fellowship at the Miller Institute for Basic
Research in Science, UC Berkeley.

1Objects are also referred to as memory requests, items, or blocks in the literature.
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Unfortunately, classic results show that any online allocator must inevitably waste most of the
memory in this no-move setting. Formally, we say an update sequence has load factor 1− ϵ if, at
every point in time, the total size of live objects,

∑
x∈X µ(x), is at most (1− ϵ)M .2 The load factor

is known to the allocator in advance. Then, any no-move allocator (even allowing randomization)
can only handle load factor 1− ϵ ≤ O( 1

logM ), which tends to 0 as M grows [Rob71, Rob74, LNO96,
BCF+25].

Memory Reallocation. This situation has motivated the theoretical study of Memory Reallo-
cation in various settings [HP04, SSS09, LGL15, BFF+15a, BFF+15b, BFF+17, Kus23, FKSW24],
where the goal is to support much higher load factor (ideally arbitrarily close to 1), by allowing the
allocator to move around existing objects in memory, while incurring a small reallocation overhead.
We follow the formal setup of this problem considered by Farach-Colton, Kuszmaul, Sheffield, and
Westover [FKSW24] (which was also studied earlier in [Kus23, BFF+17, NT01] with extra history-
independent or cost-oblivious requirements; see Section 1.3), defined as follows:

In the Memory Reallocation problem, to handle an update, the allocator may move the existing
objects, at an (unnormalized) switching cost defined as the total size of moved objects (including
the object being inserted/deleted). The overhead factor (or overhead for short) is the unnor-
malized switching cost divided by the size of the object being inserted/deleted. Formally, when
inserting (or deleting) an object x, changing X to X ′ = X ⊔ {x} (or X ′ = X \ {x}), if the allocator
changes the allocation map ϕ : X → {0, 1, . . . ,M − 1} to ϕ′ : X ′ → {0, 1, . . . ,M − 1}, then the
overhead factor incurred for this update is

1 +
1

µ(x)
·

∑
y∈X∩X′:
ϕ(y)̸=ϕ′(y)

µ(y).

When the load factor is 1 − ϵ, the following folklore deterministic allocator [BFF+17, Kus23]
achieves an O(ϵ−1) overhead factor (remarkably, independent of the memory size M) for every
update: to insert an object x, one simply finds an interval of size O(ϵ−1µ(x)) with at least µ(x)
empty memory slots (which must exist by an averaging argument), and reorganizes all objects
contained in this interval to create a contiguous empty space that fits x.

On the other hand, there has been no known lower bound that rules out constant overhead.
This raises the following main question:

What is the best possible reallocation overhead as a function of the load factor 1− ϵ?

To be more precise, when we say an allocator A achieves overhead f(ϵ), we mean that for every
ϵ > 0, there exists a family of allocators {AM}M∈Z+ such that for every M ∈ Z+, AM achieves
overhead f(ϵ) on all input instances with M memory slots and load factor 1− ϵ.

Previous results. Recent works have made progress on this question via randomization. For-
mally, we say a randomized allocator achieves (worst-case) expected overhead f(ϵ) (against an
oblivious adversary), if for every update sequence that is fixed in advance with load factor 1 − ϵ,

2A more relaxed definition of load factor, which appeared in some previous works such as [Kus23], allows the total
size of live objects to be at most ⌊(1− ϵ)M⌋+ 1 (where ϵ > 0). These two definitions are equivalent up to changing
ϵ by a constant factor; see Observation 2.1.
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the overhead factor incurred for each update has expectation at most f(ϵ) over the randomness of
the allocator.

In the special case where every object has size at most ϵ4M , Kuszmaul [Kus23] designed a
randomized allocator with O(log ϵ−1) expected overhead, exponentially better than the folklore al-
locator. His allocator is based on a variant of uniform probing with strong history independence.
For larger object sizes, however, he conjectured that the folklore O(ϵ−1) overhead was optimal. Sur-
prisingly, this conjecture was later disproven by Farach-Colton, Kuszmaul, Sheffield, and Westover
[FKSW24], who designed a randomized allocator with expected overhead O

(
(1ϵ )

1/2 polylog(1ϵ )
)
.

The allocators of [Kus23] and [FKSW24] additionally satisfy a resizability property, namely
that the live objects X are always allocated to the prefix

[
0, 1

1−ϵ

∑
x∈X µ(x)

)
of the memory. Al-

though no lower bound was known for general allocators, [FKSW24] proved that resizable allocators
must incur overhead Ω(log ϵ−1) (even if the entire update sequence is known in advance). However,
this still leaves an exponential gap from their O

(
(1ϵ )

1/2 polylog(1ϵ )
)

upper bound.
Despite the lack of progress in the general case, several special classes of update sequences are

known to admit logarithmic expected overhead. Examples (in addition to the aforementioned tiny-
object case [Kus23]) include: update sequences where all objects have power-of-two sizes [Kus23],
update sequences with only a constant number of distinct object sizes, all within a constant factor
of each other (this was mentioned in [FKSW24] as a corollary of their techniques), as well as a
certain distribution of random update sequences [FKSW24]. Inspired by these successful exam-
ples, the authors of [FKSW24] speculated that the general case could possibly be tackled by a
structure-versus-randomness dichotomy, as is often featured in additive combinatorics. To add to
this optimism, additive combinatorial techniques have led to advances in several algorithmic prob-
lems involving packing various-sized objects (such as Knapsack and Bin Packing; see Section 1.3).
Memory Reallocation appears to be another problem of this type, albeit with an additional dynamic
flavor.

1.1 Our results

Upper bound. We present the first allocator with expected overhead factor polylog
(
1
ϵ

)
, expo-

nentially improving the previous state-of-the-art result by Farach-Colton, Kuszmaul, Sheffield, and
Westover [FKSW24]. Like [FKSW24] and [Kus23], our allocator is resizable.

Theorem 1.1 (Section 4). The Memory Reallocation problem can be solved by a randomized re-
sizable allocator with worst-case expected overhead O(log4 ϵ−1 · (log log ϵ−1)2) against an oblivious
adversary.

As a confirmation of the conjecture in [FKSW24], Theorem 1.1 exploits the additive combina-
torics of the object sizes, but the actual design of the allocator turns out to be less complicated
than we expected. The only combinatorial tool we need is a simple but beautiful theorem of Erdős
and Sárközy about subset sums [ES92], which they proved using the celebrated sunflower lemma
pioneered by Erdős and Rado [ER60]. See Section 1.2 for a brief overview of the techniques.

By a simple transformation (see Observation 2.1), Theorem 1.1 also implies an allocator with
polylog(M) overhead, even when all the M memory slots can be full.

Corollary 1.2. The Memory Reallocation problem (where the memory can be full) can be solved by
a randomized resizable allocator with worst-case expected overhead O(log4M · (log logM)2) against
an oblivious adversary.

3



Lower bound. Our next result is a logarithmic lower bound for the overhead factor, which is
also the first known super-constant lower bound that applies to general allocators without extra
constraints. Previously, a logarithmic lower bound was known for resizable allocators [FKSW24],3

and a near-logarithmic lower bound was known for strongly history-independent allocators [Kus23].

Theorem 1.3 (Section 5). In the Memory Reallocation problem, the worst-case expected overhead
of any allocator (against an oblivious adversary) must be at least Ω(log ϵ−1).

Closing the near-quartic gap between our upper bound and lower bound is an interesting open
question.

High-probability guarantee? Theorem 1.1 only achieves worst-case expected logarithmic over-
head. On each update, our allocator may incur large overhead with non-negligible probability,
due to periodically performing expensive rebuilds. This raises a natural question: can we improve
Theorem 1.1 to achieve polylog ϵ−1 overhead on every update with high probability in ϵ−1, or even
deterministically?

Unfortunately, our next theorem implies that this is not possible. In the following, the squared
overhead incurred for an update is defined as the square of the overhead factor for that update.

Theorem 1.4 (Section 5). In the Memory Reallocation problem, the worst-case expected squared
overhead of any allocator (against an oblivious adversary) must be at least Ω(ϵ−1/7), even when all
objects have size Θ(ϵ3/7M).

In the scenario of Theorem 1.4, the overhead factor of any update is always at most O(ϵ−3/7)
(which corresponds to reorganizing the entire memory). Hence, if there is an allocator for load
factor 1 − ϵ that achieves, for each update, an overhead at most f with at least 1 − δ probability,
then either f ≥ Ω(

√
ϵ−1/7) = Ω(ϵ−1/14) or δ ≥ Ω

(
ϵ−1/7

(ϵ−3/7)2

)
= Ω(ϵ5/7) must hold.

The exponent 1/7 in Theorem 1.4 can be slightly improved by a more complicated refinement
of our proof, which we omit in this paper. We leave it to future work to determine the tight bound.

Similarly to Corollary 1.2, we can show variants of Theorems 1.3 and 1.4 with lower bounds
stated in terms of the number of memory slots M (which may be full); see details in Section 5.

1.2 Technical overview

Upper bound. We briefly describe the technical ingredients behind our proof of Theorem 1.1.
Our starting point is a generic substitution strategy employed by Farach-Colton, Kuszmaul,

Sheffield, and Westover [FKSW24] in their allocator beating the folklore O(1/ϵ) overhead. Their
allocator is resizable, i.e., the live objects X are always allocated within the prefix [0, 1

1−ϵ

∑
x∈X µ(x))

of memory. For a resizable allocator, it is always safe to append any inserted object immediately
after the rightmost live object in memory. The challenge is to restore resizability whenever a deletion
happens and creates a gap in memory. If the deleted object x is near the right end of the allocation,
then it is cheap to shift leftward all the objects after x, filling in the gap. However, this becomes
expensive if the deleted object x is far from the right end.

A key idea of [FKSW24] is a substitution strategy: find another object y near the right end
such that µ(x) − µ(y) is non-negative but small, and move y into x’s original place, nearly filling

3An advantage of [FKSW24]’s lower bound is that it also applies to offline resizable allocators, whereas ours only
applies to online allocators.
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in the gap. The original place of y then becomes a gap, but it is cheaper to fill it since it is closer
to the right. In order to ensure that such a good substitute object y can always be found near the
right end, [FKSW24]’s allocator carefully sorts and organizes the objects in memory, and performs
periodic rebuilds. Intuitively, if many updates have happened and consumed most of the available
substitute objects on the right, then it performs an expensive rebuild to replenish the supply.

The allocator in [FKSW24] guarantees that the substitute object y and the deleted object x have
relative size difference O(ϵ1/2). While moderately small, this size difference is still non-negligible and
accumulates over time, causing significant waste of memory. This is the main reason why [FKSW24]
only achieves polynomial overhead instead of polylogarithmic. On the positive side, [FKSW24]’s
substitution strategy with rebuilds can imply the following interesting corollary (which was noted
in the conclusion section of their paper):

Proposition 1.5 (based on [FKSW24]). If there are only k distinct object sizes, all in [µ, 2µ], then
an allocator can achieve worst-case expected overhead O(k log M

kµ).

When very few distinct object sizes exist, Proposition 1.5 offers a significantly improved overhead
factor compared to the general case. Roughly speaking, Proposition 1.5 is possible because one can
ensure that the substitute object y always has exactly the same size as x.

Our strategy for proving Theorem 1.1 can be viewed as reducing from the general case to the
special case of few distinct object sizes in Proposition 1.5. The key tool that enables this reduction is
an additive combinatorial result of Erdős and Sárközy [ES92], which they proved using the sunflower
lemma: in any (multi)set S of integers from [n], one can find at least Ω( |S|

log2 n
) disjoint subsets {Bi}i,

each of cardinality |Bi| ≤ O(log n), which all have equal sum
∑

a∈Bi
a.4

When the object sizes are within a constant factor of each other, we can appropriately round
each object size up by a factor of at most 1+ ϵ (which is allowable when the load factor is 1−O(ϵ)),
and then iteratively apply the above lemma with O(ϵ−1) in place of n. This partitions the objects
into bundles of O(log ϵ−1) objects each, with at most polylog(ϵ−1) distinct bundle sizes. We allocate
each bundle contiguously in memory. In this way, our situation resembles the special case of few
distinct object sizes as in Proposition 1.5. The difference is that we operate on bundles rather than
individual objects; this increases the overhead factor by the number of objects in each bundle, which
is only logarithmic.

Our proof of Theorem 1.1 proceeds not by a black-box reduction to Proposition 1.5, but rather
by modifying its proof and handling additional implementation details related to bundling. For
example, we need to unbundle a bundle when one of its objects is deleted, and bundle new objects
as they are inserted. During each rebuild operation, we will rebundle the affected objects, so that
the number of distinct bundle sizes remains bounded by polylog(ϵ−1). (We also need to lift the
bounded-ratio assumption in Proposition 1.5; this was already addressed by [FKSW24], and we
omit the details in this overview.)

Since [FKSW24] did not explicitly prove Proposition 1.5, we include a proof below for conve-
nience. This also serves as a warm-up for our main proof of Theorem 1.1.

Proof of Proposition 1.5 (based on [FKSW24]). We maintain the prefix property, namely that all
live objects occupy a prefix of the memory without any gaps in between. The objects are partitioned

4The actual theorem in [ES92] was not this statement, but rather its direct corollary that the subset sums of
S contain an arithmetic progression of length Ω( |S|

log2 n
). The latter statement is of more historical interest in the

literature, but less useful for us.
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(i) x y

Level 3 Level 2 Level 1 Level 0

(ii) y

Level 3 Level 2 Level 1 Level 0

(iii)

Level 3 Level 2 Level 1 Level 0

Figure 1: An illustration for the proof of Proposition 1.5 with two types of object sizes. (i) Initial
state at c = 3, where object x is to be deleted. We find another object y of the same size in level 0.
(ii) Swap x and y before deleting x. (iii) Increase the counter to c = 4, and rebuild levels 2, 1, and
0.

into ℓ := ⌈log(Mkµ)⌉ levels numbered ℓ − 1, . . . , 1, 0 from left to right, each occupying a contiguous
interval of memory.5

Intuitively, levels further to the left can have larger total size and are less frequently rebuilt.
Formally, we maintain the following two invariants, where the counter c is initialized to a random
integer and incremented by one per update (i.e., insertion or deletion).

• For every integer j ∈ [1, ℓ], the total number of objects in levels {j − 1, . . . , 1, 0} is at most
k · 2j + (c mod 2j) < (k + 1)2j .

• For every object size τ and integer j ∈ [1, ℓ− 1], if levels {ℓ− 1, . . . , j + 1, j} contain at least
one size-τ object, then the total number of size-τ objects in levels {j − 1, . . . , 1, 0} is at least
2j − (c mod 2j) ≥ 1.

Clearly, the two invariants hold at the beginning with empty memory.
To insert an object, we add it to level 0 immediately after the current rightmost object.
To delete a size-τ object x, if x is not already in level 0, we swap x with another size-τ object y

from level 0, which must exist due to the second invariant. See Fig. 1. Hence, the deletion only
creates a gap in level 0, which will be filled during the rebuild operation described below.

After every update, we increment the counter c and then perform a rebuild as follows. Pick the
largest integer j∗ ≤ ℓ−1 such that 2j∗ divides c. Then, we collect all objects in levels {j∗, . . . , 1, 0},
and repartition them by the following greedy rule: Define (n0, n1, . . . , nj∗−1) := (2, 2, 4, 8, 16, 32, . . . )
and nj∗ := +∞. For each object size τ , we put n0 size-τ objects in level 0, then put n1 of the
remaining size-τ objects in level 1, and so on, until the number of remaining size-τ objects is
smaller than nj for the current level j, at which point we finish by putting all of them in level j.

To prove the first invariant for j ∈ [1, ℓ− 1] (the j = ℓ case vacuously holds by our definition of
ℓ), consider the most recent rebuild that involves level j, which happened c mod 2j updates before
(if no such rebuild happened before, the proof is similar). Right after this rebuild, the number of

5This is slightly different from [FKSW24], who defined levels as nested subsets instead of disjoint subsets.
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objects in levels {j − 1, . . . , 1, 0} is at most n0 + n1 + · · · + nj−1 = 2j for each object size τ , and
hence at most k · 2j in total. Each subsequent update increases this count by at most one, so the
first invariant holds. The second invariant can be proved similarly (we omit the details here).

For each update, a rebuild of levels {j, . . . , 1, 0} is triggered with probability O(2−j), incurring
a switching cost bounded by their total size, which is O(k · 2j · µ) by the first invariant. Hence, the
expected overhead factor is

∑ℓ−1
j=0O(2−j) ·O(k · 2j · µ)/µ = O(kℓ) = O(k log(Mkµ)) as claimed.

Lower bounds (general strategy). We begin with a minor technical simplification for all our
lower bound proofs: by a rounding argument (see Observation 2.1), it suffices to prove overhead
lower bounds in the scenario where the number of slots is M = Θ(1/ϵ) and the memory may be
full. See details in Section 5.

Now we discuss the general proof ideas for Theorem 1.3 and Theorem 1.4. Recall the allocator
in Theorem 1.1 exploits the “additive coincidences” of object sizes, namely different small subsets
of equal sum, to perform cheap substitutions. The proofs of lower bounds proceed in the opposite
direction: we design hard instances that lack additive coincidences, so that cheap substitutions
are impossible. This idea was already reflected in the previous lower bound by [FKSW24] against
resizable allocators, and we will further build on this idea.

We will frequently use the following simple but crucial notion implicitly introduced by [FKSW24]:
between two full memory states ϕ, ϕ′, a maximal changed interval is an inclusion-maximal interval
of memory such that no object in ϕ intersecting this interval retains its location in ϕ′. Let ∆(ϕ, ϕ′)
denote the total length of all the maximal changed intervals. Then, transforming ϕ into ϕ′ requires
a total switching cost at least ∆(ϕ, ϕ′). See Fig. 2 for an illustration and Section 5.1 for formal
definitions.

A maximal changed interval either permutes the objects inside, or substitutes them by a different
set of objects with the same total size. At a high level, by designing object sizes with few additive
coincidences, we have control of the possible substitutions that might occur. This helps us show
limitations of low-overhead allocators, which can only produce short maximal changed intervals.

ϕ 2 5 3 1 3

ϕ′ 1 1 5 1 3 3

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 2: Visualization of two full memory states ϕ, ϕ′ with M = 14 slots. The unchanged objects
in ϕ and ϕ′ (highlighted in dark gray) have sizes 5 and 3. The maximal changed intervals between
them (highlighted in dashed blue) are [0, 2) and [7, 11).
To transform ϕ to ϕ′, the allocator must incur a total switching cost of at least ∆(ϕ, ϕ′) = 2+3+1 =
6.

Logarithmic lower bound. Now we sketch the proof of Theorem 1.3, which is relatively simple.
Recall that it suffices to prove a worst-case expected Ω(logM) overhead lower bound when all M
memory slots can be full. We construct a set S = {s1, s2, . . . , sk} ⊂ Z+ such that for every pair of
distinct a, b ∈ [k], there exist s′a, s′b ∈ Z+ with s′a+s′b = sa+sb so that the following property holds:
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• Let S′ = (S \ {sa, sb}) ⊔ {s′a, s′b}. If X ⊆ S and X ′ ⊆ S′ satisfy
∑

x∈X x =
∑

x′∈X′ x′ and
sa ∈ X, then sb ∈ X must hold as well.

One can verify that the following construction works and ensures every integer is bounded by O(22k):
si := 2i+k+2i for all i ∈ [k], s′a := 2a+k+2b and s′b := 2b+k+2a. We further modify this construction
to make every integer in Θ(22k) by padding (see details in Section 5.2). Define the total number
of memory slots to be M := s1 + · · · + sk (hence, k = Θ(logM) and si ∈ Θ(M/ logM)). In the
hard instance, we first insert k objects of sizes s1, s2, . . . , sk to completely fill the memory, and
denote the current memory state by ϕ. Then, we pick two distinct indices a, b ∈ [k] uniformly at
random, delete the objects of sizes sa, sb and insert objects of sizes s′a, s

′
b as defined above. Denote

the current memory state by ϕ′. Now, consider the maximal changed interval [L,R) between ϕ, ϕ′

that contains the size-sa object of ϕ. Let X denote the set of sizes of objects in ϕ contained in
[L,R), so sa ∈ X. Then, the property above implies that sb ∈ X as well. Therefore, R − L is at
least the distance between the size-sa and size-sb objects in ϕ, which has expectation Ω(M) over
the randomness of a and b. Thus, the total expected switching cost for the two insertions and
two deletions is at least E[∆(ϕ, ϕ′)] ≥ E[R − L] ≥ Ω(M), so the worst-case expected overhead is
Ω(M)/Θ(M/ logM) = Ω(logM) as claimed.

High-probability lower bound. Our proof of Theorem 1.4 is more involved. As a warm-up,
it is instructive to see a proof sketch of the following worst-case lower bound against deterministic
allocators with the prefix property (which is more or less the same as resizability):

Proposition 1.6. Any deterministic allocator that satisfies the prefix property, namely that all live
objects must occupy a prefix of the memory without any gaps in between, must incur worst-case
overhead Ω(M1/4) when there are M memory slots which can be full.

Compared to Theorem 1.4, here we are restricting to deterministic allocators to avoid prob-
abilistic technicalities, but the main simplification of the proof comes from the prefix property
assumption.

Proof of Proposition 1.6. We pick two integers a, b ∈ [µ, 2µ] with µ = Θ(
√
M), so that all integers

ia+jb where i, j ∈ Z∩[0,M/µ] are distinct. For example, a := µ := ⌈
√
M⌉ and b := a+1 satisfy this

property. In our hard update sequence, we first insert ⌊M/b⌋ objects of size b. Then, we gradually
replace all of them by size-a objects as follows: in every iteration, we delete one size-b object, and
insert O(1) size-a objects until the total size of live objects is in (M − a,M ]. (This is almost the
same as the update sequence in [FKSW24]’s proof of the amortized logarithmic lower bound against
resizable allocators.) Denote the memory state right after the i-th iteration (i ≤ ⌊M/b⌋) by ϕi. For
a size-a object at location λ, define its potential to be M − λ ≥ 0; the potential of a memory state
is simply the total potential of all the size-a objects in it. At the beginning, the total potential is
zero. In the end, among all the ⌊M/a⌋ size-a objects, at least half of them have potential Ω(M),
with total potential Ω(M2/a) = Ω(M3/2).

Between two adjacent memory states ϕi, ϕi+1, consider all the maximal changed intervals [Lk, Rk),
with the exception that the interval [Lf , Rf ) containing the rightmost object of ϕi+1 is redefined with
right boundary Rf := M . See an illustration in Fig. 3. Since the rightmost gap in ϕi+1 is smaller than
a, the total switching cost to transform ϕi into ϕi+1 is at least

∑
k ̸=f (Rk−Lk)+(Rf−Lf−a). Assum-

ing the allocator incurs worst-case switching cost S per update, this implies
∑

k(Rk−Lk) ≤ O(S)+a.
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ϕi a a b a b b b a b a b b b b

0 M

ϕi+1 a b b a a b b b a a b a b b

Figure 3: An illustration for the proof of Proposition 1.6. Between memory states ϕi, ϕi+1 satisfying
the prefix property, every maximal changed interval [Lk, Rk) (marked in dashed blue), except for
the rightmost one, permutes the objects inside.

Every [Lk, Rk), except for the rightmost one, is completely filled by objects, and hence must
contain the same number of size-a and size-b objects in both states, due to the property of a and b
stated at the beginning. Now we analyze the total potential difference between ϕi and ϕi+1:

• Inside every [Lk, Rk) (k ̸= f), we can perfectly pair up the a-objects in ϕi with those in
ϕi+1, forming at most (Rk −Lk)/a pairs. Each pair contributes potential difference less than
Rk − Lk. Hence, the total contribution to the potential difference is ≤ (Rk − Lk)

2/a.
• Inside the rightmost maximal changed interval [Lf , Rf ) in ϕi (and in ϕi+1), there are at most
(Rf −Lf )/a size-a objects, each with potential at most M −Lf = Rf −Lf . Hence, the total
contribution to the potential difference is also ≤ (Rf − Lf )

2/a.

Summing up, the total potential difference between ϕi, ϕi+1 is at most∑
k

(Rk − Lk)
2/a ≤

(∑
k

(Rk − Lk)
)2
/a ≤ (O(S) + a)2/a = O(S2/a+ a).

Summing up over all i ≤ ⌊M/b⌋, we obtain that the potential difference between the initial and
final states is O(Mb (

S2

a + a)) = O(S2 +M). Since we showed earlier that this potential difference is
Ω(M3/2), this implies S ≥ Ω(M3/4) for sufficiently large M . Hence, the worst-case overhead factor
is at least Ω(S/µ) = Ω(M1/4) as claimed.

Relaxing the prefix requirement in Proposition 1.6 poses more technical challenges. In particular,
the update sequence in the proof of Proposition 1.6 becomes easy: an allocator could always store
size-a objects in a prefix of the memory, and size-b objects in a suffix, leaving a gap somewhere
in the middle. Each update can be handled with constant overhead, by performing insertions and
deletions near the gap.

We now sketch how to modify the proof of Proposition 1.6 to obtain an MΩ(1) worst-case bound
for general deterministic allocators (without details on the calculation of parameters). We pick
object sizes a, b ∈ Θ(µ) with the same roles as before, and another object size c ∈ Θ(µ) whose
role will be explained later. In our construction, we ensure the total size of size-a, size-b, and
size-c objects stays in M −Θ(µ), and we always insert another special object f (which we call the
“finger object”) so that all M memory slots are fully occupied. By selecting a, b, c to avoid additive
coincidences, we can achieve the following crucial property (formally stated in Lemma 5.14):

• Between two full memory states ϕ and ϕ′, if a maximal changed interval does not contain the
finger object of either state, then it can only permute the objects within it.
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ϕ′ a a c a b b c f ′ b b c b c

ϕ a b c a a b c b f c c b c

Figure 4: An illustration for Lemma 5.14 with two memory states ϕ, ϕ′ (corresponding to S3,5 and
S3,4 in Definition 5.10 respectively). Two maximal changed intervals are marked in dashed blue.
The first interval contains objects of sizes {a, a, b, c} in both ϕ, ϕ′. The second interval contains the
finger objects of both ϕ, ϕ′.

This property is reminiscent of our previous proof for the prefix setting (Proposition 1.6): local
permutation of objects may happen anywhere in memory, but insertions and deletions can only
happen near the rightmost gap (or, in the non-prefix setting here, the finger object). However,
unlike in the prefix setting, here the finger object may not always stay at the same place throughout
the process. If we could somehow constrain the finger object to remain close to a location p, then
we could adapt the previous potential-based proof by defining the potential of a size-a object at
location λ to be ≈ |p− λ| (see the proof of Lemma 5.24).

It remains to describe how to constrain the finger object in a relatively small interval. We modify
our earlier hard instance to include Q size-c objects, in addition to the Θ(M/b) size-b objects at
the beginning, where Q is polynomially smaller than M/b. As before, we gradually replace the
size-b objects by size-a objects. However, we interrupt this process at a random time step unknown
to the allocator, and start a “surprise inspection” instead, where we gradually delete all the size-c
objects. To stay prepared for the surprise inspection, the allocator must always keep all the size-c
objects close to the finger object; otherwise, it would be expensive to delete all the size-c objects
as demanded, since deletions can only happen near the finger object as we mentioned earlier (this
strategy is formally implemented in the proof of Lemma 5.20). Consequently, it is too expensive
for the allocator to move the finger object significantly far away, since it would have to carry along
a large number of size-c objects to move together with the finger object (this is formally proved in
Lemma 5.21 via a similar potential argument). Therefore, the finger object is always constrained
in a small interval as desired.

The proof strategy described above yields a deterministic worst-case MΩ(1) lower bound on
the overhead factor. Since our hard update sequence is oblivious, the same proof also applies to
randomized allocators with high-probability guarantees against an oblivious adversary. In fact, our
proof gives a polynomial lower bound already for the L2 norm of the overhead factor, as stated in
Theorem 1.4.

1.3 Related works

Memory (Re-)allocation. Bender, Farach-Colton, Fekete, Fineman, and Gilbert [BFF+17]
defined and studied the Memory Reallocation problem in the cost-oblivious setting, where the
cost of inserting, deleting, and moving an object of size µ is an arbitrary unknown subadditive
function c(µ). This is substantially more general than many other works (including ours), e.g.,
[NT01, Kus23, FKSW24], which assume c(µ) = µ.

Naor and Teague [NT01] and Kuszmaul [Kus23] studied Memory Reallocation (for both unit-
size and variable-size objects) in history-independent settings. In the strongly history-independent
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setting, the allocation of a set S of labeled objects should only depend on the set S and the ran-
domness of the allocator. Kuszmaul [Kus23] showed that, even for the unit-size case, a strongly
history-independent allocator must incur expected reallocation overhead Ω(log ϵ−1/ log log ϵ−1),
nearly matching the previous O(log ϵ−1) upper bound by Berger, Kuszmaul, Polak, Tidor, and
Wein [BKP+22].

The very recent work of Bender, Conway, Farach-Colton, Komlós, Kuszmaul, and Wein [BCF+25]
studied a variant of memory allocation (without reallocation) in which each object being inserted
is allowed to be fragmented into up to k contiguous pieces. In this request fragmentation setting,
they bypassed the logarithmic barrier for the memory competitive ratio in the classic k = 1 case
[Rob71, Rob74, LNO96, BCF+25]. They also determined the optimal memory competitive ratio in
this setting.

Sunflower lemma. The classic Erdős–Rado sunflower lemma [ER60] was quantitatively improved
in a recent breakthrough by Alweiss, Lovett, Wu, and Zhang [ALWZ21], and further refined by
[Rao20, Tao20, FKNP21, BCW21]; see the surveys by Rao [Rao23, Rao26]. The recent advances
on sunflower lemmas led to the resolution of the Kahn–Kalai conjecture [PP24].

In theoretical computer science, the sunflower lemma has found applications in data structure
lower bounds [FMS97, GM07, RR18], circuit lower bounds [Raz85, AB87, Ros14, CKR22, BM25,
dRV25, CGR+25] and lifting theorems [LMM+22], parameterized algorithms [Mar05], sparsifying
or analyzing DNF formulas [GMR13, LZ19, LSZ19, AW21, Tan22], etc. See [ALWZ20, Section 1.2
of the conference version] for a more comprehensive list of references.

Subset sums and algorithm design. Our key lemma is extracted from Erdős and Sárközy’s
proof that the subset sums of any S ⊆ [n] must contain an arithmetic progression of length
Ω(|S|/ log2 n) [ES92]. Schoen [Sch11] subsequently improved this bound to Ω(|S|/ log n), but his
proof does not yield the equal-sum disjoint subsets (crucial for our approach) as [ES92]’s proof does.
The results of [ES92, Sch11] can be greatly improved in the regime where |S| ≥ nc for constant c > 0,
e.g., [AF88, Fre93, Sár94, SV06b, SV06a, CFP21]. Some of these results have found algorithmic ap-
plications in recent pseudopolynomial and approximation algorithms for 0-1 Knapsack and related
problems, e.g., [GM91, BW21, CLMZ24b, Bri24, Jin24, CLMZ24a, CLMZ24c, CMZ25]. Additive
combinatorics of subset sums has also led to faster algorithms for Bin Packing [NPSW23, JSS21].

Very recently, motivated by questions related to Subset Sum algorithms, Chen, Mao, and Zhang
[CMZ26] designed a fast algorithm for constructing the equal-sum disjoint subsets as given by
[ES92]’s proof. Their result may potentially be helpful in designing a time-efficient implementation
of our allocator; see further discussions in Section 6.

Paper organization

Section 2 gives some useful preliminaries. Section 3 proves the key combinatorial lemmas used by
our allocator. Section 4 describes our allocator. Section 5 proves the lower bounds. We conclude
with several open questions in Section 6.
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2 Preliminaries

Notations. Denote [n] = {1, 2, . . . , n} and Z+ = {1, 2, . . . }. All logarithms are base two unless
otherwise specified.

For b > 0, let a mod b denote the unique number r ∈ [0, b) such that a− r is an integer multiple
of b.

We often write A ⊔B instead of A ∪B to emphasize that the sets A and B are disjoint.

On the definition of load factor. We have defined the load factor 1− ϵ (where ϵ > 0) to mean
that the total size of live objects at any time is at most (1−ϵ)M , where M is the number of memory
slots. Another definition in the literature (e.g., [Kus23]) relaxes this upper bound to ⌊(1−ϵ)M⌋+1;
in particular, when M ≤ 1/ϵ, this upper bound becomes M , i.e., the memory is allowed to be
full. The following Observation 2.1 shows that these two definitions are actually equivalent up to
changing ϵ by a constant factor. This fact will be convenient for proving lower bounds in Section 5.

Observation 2.1. For ϵ > 0, if there is an allocator A that (for all M ∈ Z+) handles total live
objects size ≤ (1− ϵ)M with overhead f(ϵ), then,

1. there is an allocator A′ that (for all M ∈ Z+) handles total live objects size ≤ ⌊(1− ϵ)M⌋+1
with overhead f(ϵ/3), and

2. there is an allocator A′′ that (for all M ∈ Z+) works even when all the M memory slots can
be full, with overhead f( 1

3M ).

Proof. We first prove Item 1. Similar proof ideas already appeared in [Kus23].
We describe how to design the desired allocator A′ given an implementation of A. Suppose

A′ receives an input instance I ′ with M ′ memory slots {0, 1, . . . ,M ′ − 1} and maximum total live
objects size ≤ ⌊(1− ϵ)M ′⌋+ 1.

Based on instance I ′, define an input instance I for A as follows: there are M := 2M ′ + 1
memory slots {0, 1, . . . ,M − 1}. For every insertion/deletion of size µ′(x) ∈ Z+ in the instance I ′,
we correspondingly create an insertion/deletion of size µ(x) := 2 · µ′(x) in I.

We run A on the constructed instance I, and translate the allocation of A to our allocator A′ by
the following rule: whenever A decides to allocate object x to the memory slots [ϕ(x), ϕ(x) + µ(x))
(where integer ϕ(x) ∈ [0,M − µ(x)] = [0, 2M ′ + 1 − 2µ′(x)]), we let A′ allocate x to the memory
slots [ϕ′(x), ϕ′(x) + µ′(x)) where ϕ′(x) := ⌊ϕ(x)/2⌋. One can verify that:

• ϕ′(x) ∈ [0,M ′ − µ′(x)], i.e., the allocated memory slots for x in I ′ are in [0,M ′), and
• [ϕ(x1), ϕ(x1)+µ(x1))∩[ϕ(x2), ϕ(x2)+µ(x2)) = ∅ implies [ϕ′(x1), ϕ

′(x1)+µ′(x1))∩[ϕ′(x2), ϕ
′(x2)+

µ′(x2)) = ∅, i.e., the disjointness of the allocated intervals is preserved.

Thus, A′ is a valid allocator for the instance I ′.
The maximum total live object size of I equals twice that of I ′, and the memory size in I is

M = 2M ′ + 1. Therefore, the load factor of I is

2 · (⌊(1− ϵ)M ′⌋+ 1)

2M ′ + 1
= 1− ⌈ϵM

′⌉ − 0.5

M ′ + 0.5
≤ 1− ϵM ′/2

M ′ + 0.5
≤ 1− ϵ/3.

Hence, A can achieve overhead f(ϵ/3) on instance I.
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Since the movement of our allocator A′ is caused by the movement of A with the same moving
objects (with size scaled by two, which does not affect the overhead factor), the overhead factor of
A′ on instance I ′ is also f(ϵ/3). This finishes the proof of Item 1.

We now derive Item 2 as an immediate consequence of Item 1. Given an input instance with M
memory slots and maximum total live objects size ≤M , we can directly solve it using the allocator
in Item 1 with ϵ set to 1/M so that ⌊(1 − ϵ)M⌋ + 1 = M . By Item 1, the overhead factor is
f(ϵ/3) = f( 1

3M ).

Real-interval setting. When proving our upper bound in Section 4, to avoid excessive use of
floors and ceilings, we use the following real-interval memory model introduced in [Kus23] and
[FKSW24]: The memory is the real interval [0,M) instead of discrete memory slots {0, 1, . . . ,M−1}.
Each object x has a real-number size µ(x), so that the total size of live objects at any time is at most
(1− ϵ)M , where 1− ϵ (ϵ > 0) is the load factor. We are allowed to allocate x at any real location
ϕ(x) ∈ [0,M − µ(x)], subject to the constraint that the occupied intervals [ϕ(x), ϕ(x) + µ(x)) are
pairwise disjoint for all live objects x. The exact value of M > 0 is not important in this setting,
and can be rescaled to any positive real number.

Observation 2.2. If there is an allocator A in the real-interval setting with overhead f(ϵ), then
there is an allocator A′ that (for all M ∈ Z+) solves the original setting with M discrete memory
slots with overhead f(ϵ).

Proof. Represent the memory by the real interval [0,M). We now proceed in a similar way to the
proof of Observation 2.1. Given an update sequence with load factor 1− ϵ for the original discrete
setting with M memory slots, we feed the same sequence to the allocator A which operates on the
real interval [0,M). In particular, every object in this update sequence has integer size. Whenever
A allocates an object x to the interval [ϕ(x), ϕ(x) + µ(x)), in the discrete setting we allocate it to
the memory slots indexed by ⌊ϕ(x)⌋, ⌊ϕ(x)⌋ + 1, . . . , ⌊ϕ(x)⌋ + µ(x) − 1. Using µ(x) ∈ Z, one can
verify that this transformation preserves the disjointness of the allocated intervals, and all the used
memory slots are from {0, 1, . . . ,M − 1}.

The load factor of this update sequence in the real-interval setting is also (1−ϵ)M
M = 1 − ϵ, so

A achieves overhead factor f(ϵ). Thus, our allocator in the discrete setting also achieves overhead
factor f(ϵ).

3 Combinatorial lemmas

A sunflower with p petals is a family of p sets whose pairwise intersections are identical (called
the core). The following is the state-of-the-art bound on the sunflower lemma, proved by Bell,
Chueluecha, and Warnke [BCW21] (based on the recent breakthrough of [ALWZ21] and subsequent
refinements [Rao20, Tao20, FKNP21]).

Lemma 3.1 (Sunflower lemma [BCW21]). There is a constant C ≥ 4 such that the following holds
for all integers p, k ≥ 2. Any family of at least (Cp log k)k distinct k-element sets must contain a
sunflower with p petals.

Following Erdős and Sárközy [ES92], we use the sunflower lemma to prove the following Lemma 3.2.
(If one uses the original Erdős–Rado bound of 1+ k!(p− 1)k [ER60] instead of the improved bound
in Lemma 3.1, the last bound in Lemma 3.2 would worsen to p ≥ n

C log2 w
.)
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Lemma 3.2. There is a constant C such that for any w ≥ 4 and any sequence of n positive integers
a1, a2, . . . , an ∈ [w], there exist disjoint subsets B1, B2, . . . , Bp ⊆ [n] such that

• The sums
∑

i∈Bj
ai are equal for all j ∈ [p],

• |B1| = |B2| = · · · = |Bp| ≤ C logw, and
• p ≥ n

C logw log logw .

Proof. The proof is due to Erdős and Sárközy [ES92] (see also recent exposition in [Rao23]). We
may assume w and n are large enough (otherwise, the lemma immediately holds for a large enough
constant C). Let k = ⌈2 logw⌉. For s ≤ nw, define set family

Ss :=

{
B ∈

(
[n]

k

)
:
∑
i∈B

ai = s

}
.

Since 0 <
∑

i∈B ai ≤ kw holds for all B ∈
([n]
k

)
, we clearly have

(
n
k

)
=

∑
1≤s≤kw |Ss|. By averaging,

there exists s such that

|Ss| ≥
(
n
k

)
kw
≥ (n/k)k

kw
≥

( n

2k

)k
,

where the last inequality follows from 2k ≥ kw by our choice of k = ⌈2 logw⌉.
Choose p = ⌊ n

2Ck log k⌋ ≥
n

C′ logw log logw , where C ′ > 0 is some constant. Then, the above
inequality implies |Ss| ≥ (Cp log k)k. Hence, by Lemma 3.1, Ss contains a sunflower with p petals
B′

1, B
′
2, . . . , B

′
p. Let the core be R = B′

1 ∩ · · · ∩ B′
p, and define B1 := B′

1 \ R, . . . , Bp := B′
p \ R.

Clearly, for all j ∈ [p],
∑

i∈Bj
ai =

∑
i∈B′

j
ai −

∑
i∈R ai = s −

∑
i∈R ai and |Bj | = k − |R|, so the

requirements are indeed all satisfied.

The following lemma is a simple refinement of the previous one. It allows us to shave off a
logarithmic factor in our later application.

Lemma 3.3. In the same setup as Lemma 3.2, one can additionally achieve |B1|+|B2|+· · ·+|Bp| ≥
n

C log logw .

Proof. We again assume n,w are large enough. We iteratively apply Lemma 3.2 as follows. Define
p∗ = ⌊ n

2C logw log logw⌋, where C is the constant from Lemma 3.2.

First, apply Lemma 3.2 to a1, . . . , an, and obtain disjoint subsets B
(1)
1 , . . . , B

(1)
p1 ⊆ [n] such that

|B(1)
j | = k1 and

∑
i∈B(1)

j

ai = s1 for all j ∈ [p1]. Since p1 ≥ p∗, we can decrease p1 down to p∗.

Then, apply Lemma 3.2 to the remaining numbers in a1, . . . , an indexed by [n]\(B(1)
1 ⊔· · ·⊔B

(1)
p1 ),

and obtain disjoint subsets B
(2)
1 , . . . , B

(2)
p2 ⊆ [n] \ (B(1)

1 ⊔ · · · ⊔ B
(1)
p1 ) such that |B(2)

j | = k2 and∑
i∈B(2)

j

ai = s2 for all j ∈ [p2]. As long as there remain at least n/2 numbers, we still have p2 ≥ p∗,

so we can decrease p2 to p∗.
Repeat this procedure until the m-th iteration, where m is the smallest integer such that k1 +

k2 + · · · + km ≥ C logw. We have k1 + k2 + · · · + km < C logw + km ≤ 2C logw. Note that the
total size of subsets removed so far is

m∑
i=1

p∗∑
j=1

|B(i)
j | = p∗(k1 + k2 + · · ·+ km) ≤ n

2C logw log logw
(2C logw) ≤ n

log logw
≤ n

2
,
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assuming w is large enough. Hence, when invoking Lemma 3.2, we always have at least n/2 objects
remaining, so p1, p2, . . . are indeed lower-bounded by p∗.

Finally, we return Bj :=
⋃m

i=1B
(i)
j for all j ∈ [p∗]. Clearly, we still have that all

∑
i∈Bj

ai are
equal, and that |B1| = · · · = |Bp∗ | = k1+k2+· · ·+km ∈ [C logw, 2C logw]. Thus, |B1|+· · ·+|Bp∗ | ≥
p∗ · C logw ≥ n

C′ log logw for some constant C ′ > 0. Therefore, all requirements are satisfied (with a
possibly different constant C).

Finally, we iteratively apply Lemma 3.3 to partition all the given integers into logarithmic-sized
subsets which have logarithmically many distinct sums. This is the lemma that we will use for
designing our allocator.

Lemma 3.4. There exist constants C1, C2 such that the following holds. For any w ≥ 4, and any
sequence of n positive integers a1, a2, . . . , an ∈ [w], there exist a partition

[n] = T1 ⊔ T2 ⊔ · · · ⊔ Tℓ, ℓ ≤ C1 log 2n log logw, (1)

and ℓ positive integers s1, . . . , sℓ, where each Tj is further partitioned into pj subsets,

Tj = Bj,1 ⊔Bj,2 ⊔ · · · ⊔Bj,pj , (2)

such that for all j:

1. For all 1 ≤ k ≤ pj,
∑

i∈Bj,k
ai = sj.

2. For all 1 ≤ k ≤ pj, |Bj,k| ≤ C2 logw.
3. For all 1 ≤ m ≤ n, the number of j ∈ [ℓ] such that pj ≥ m is at most C1 log(2n/m) log logw.

We remark that the first two properties in Lemma 3.4 are more important. Item 3 only serves
to shave a near-logarithmic factor in our later application.

Proof. Starting from all the indices [n], we iteratively apply Lemma 3.3 to build the partition Eq. (1).
Each application of Lemma 3.3 returns one set Tj together with its decomposition Eq. (2) which
satisfies Item 1 and Item 2 by definition. After each application, we remove the already processed
part Tj , and continue with the remaining indices, until all of [n] have been partitioned.

By the guarantee of Lemma 3.3, each iteration removes a subset Tj which contains an Ω(1/(log logw))
fraction of the remaining indices. Consequently, after O(log(2n/m) log logw) iterations, the number
of remaining indices drops below m, and after that we must have pj ≤ |Tj | < m. This proves Item 3.
In particular, the total number of iterations is ℓ = O(logn log logw).

4 The allocator

In this section, we present our allocator with polylogarithmic overhead, proving Theorem 1.1. By
Observation 2.2, we model the memory as the real interval [0,M) throughout this section.

Our main lemma is an allocator that achieves polylogarithmic overhead when the objects are
not tiny.

Lemma 4.1. Let ℓ ≥ 2 be an integer. In the real-interval setting with load factor 1 − ϵ where all
objects x have sizes µ(x) > 2−ℓM , there is a resizable allocator with (worst-case) expected overhead
O(ℓ3(log ϵ−1)(log ℓ+ log log ϵ−1)2).
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Combined with previously known results, Lemma 4.1 implies our main theorem.

Proof of Theorem 1.1 assuming Lemma 4.1. Kuszmaul [Kus23] gave a resizable allocator for objects
of size ≤ ϵ4M with worst-case expected overhead O(log ϵ−1). Farach-Colton, Kuszmaul, Sheffield,
and Westover [FKSW24, Section 4.2] showed that, given another resizable allocator that handles
objects of size larger than ϵ4M with worst-case expected overhead f(ϵ), one can combine it with
Kuszmaul’s allocator to obtain a resizable allocator that handles arbitrary object sizes and achieves
worst-case expected overhead O(f(ϵ) + log(ϵ−1)). Since Lemma 4.1 achieves f(ϵ) ≤ O(log4 ϵ−1 ·
(log log ϵ−1)2) for ℓ = O(log ϵ−1), together they imply Theorem 1.1.

The rest of this section is devoted to the proof of Lemma 4.1. As introduced in the overview
section, the proof is a combination of our bundling idea based on [ES92] (see Section 3) and the
substitution strategy with periodic rebuilds from [FKSW24] (as illustrated in the warm-up proof of
Proposition 1.5). Additionally, we need to relax the bounded-ratio assumption of Proposition 1.5
in the same way as [FKSW24].

For simplicity, we assume the load factor is 1 − 2ϵ instead of 1 − ϵ. We also assume ϵ−1 is an
integer. Both assumptions can be justified by scaling ϵ by at most a constant factor.

We rescale the length of the real memory interval [0,M) to M := 2ℓ. Then, the assumption in
Lemma 4.1 implies that each object x has size µ(x) > 1.

4.1 Basic definitions

Scales and inflation. A scale refers to an interval (2i, 2i+1] of object sizes, where i ∈ Z. For the
purpose of Lemma 4.1, the relevant scales are (1, 2], (2, 4], . . . , (2ℓ−1, 2ℓ], i.e., i ∈ {0, 1, . . . , ℓ− 1}.

For an object x with size µ(x) = s ∈ (2i, 2i+1], we inflate its size to µ(x) := ⌈ s
ϵ·2i+1 ⌉ · ϵ · 2i+1.

Since ϵ−1 is an integer, the inflated size is ϵ · 2i+1 multiplied by an integer in (ϵ−1/2, ϵ−1], and still
lies in the interval (2i, 2i+1]. The inflation increases µ(x) by at most a factor of (1 + 2ϵ), so the
new load factor becomes (1 − 2ϵ) · (1 + 2ϵ) < 1, i.e., the total size of live objects remains smaller
than M . The inflation affects the overhead factor by at most 1 + 2ϵ = O(1) multiplicatively. We
always use µ(x) to denote the size of x after inflation. Clearly, an allocation of the inflated objects
automatically gives an allocation of the original objects.

After inflating the objects, our allocator maintains the prefix property, namely that all objects
are stored without any gaps in between, starting from the left boundary of the memory. This
property immediately implies that our allocator is resizable.

Bundles and types. Our allocator partitions the live objects into bundles of various types. The
type of a bundle B is denoted by type(B). Objects in the same bundle are always allocated
contiguously in memory. Objects in the same bundle must have the same scale (2i, 2i+1]. Any two
bundles B,B′ of the same type must have equal size,

∑
y∈B µ(y) =

∑
y∈B′ µ(y). From time to time,

the allocator may unbundle old bundles and form new bundles.
Given a subset Y of objects, we use the procedure CreateBundles(Y ) (Algorithm 1) to

partition Y into bundles, and assign newly created types to these bundles. This procedure invokes
Lemma 3.4 for each scale (2i, 2i+1] separately to bundle the objects of that scale in Y . In Lemma 3.4,
each subset Bj,k ⊂ Tj in Eq. (2) represents a bundle of objects, and Tj corresponds to the type of
that bundle.
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Algorithm 1: CreateBundles(Y ), where Y is a set of objects
1 B ← ∅ // the collection of created bundles
2 for i ∈ {0, 1, . . . , ℓ− 1} do
3 Yi := {y ∈ Y : µ(y) ∈ (2i, 2i+1]}
4 Let Yi = {y1, y2, . . . , y|Yi|}, and define am := µ(ym)/(ϵ · 2i+1).
5 Apply Lemma 3.4 with w := ϵ−1 to integers a1, . . . , a|Yi| ∈ [w], and obtain the partition

of [|Yi|] as in Eqs. (1) and (2)
6 for each Tj in Eq. (1) do
7 τnew ← τnew + 1 // Create a new type indexed by τnew (a global counter).
8 for each Bj,k ⊂ Tj in Eq. (2) do
9 Create a bundle B := {ym : m ∈ Bj,k} with type(B) := τnew

10 B ← B ⊔ {B}.

11 return B

Levels. The live objects allocated in memory are partitioned into ℓ levels, where each level consists
of a contiguously allocated (possibly empty) set of bundles. The levels are indexed decreasingly by
ℓ− 1, ℓ− 2, . . . , 1, 0 from left to right.

We maintain that level j can only contain objects x with µ(x) ≤ 2j+1. In other words, an object
of scale (2i, 2i+1] can only be placed in levels ℓ− 1, ℓ− 2, . . . , i+1, i. In particular, an object of the
smallest scale (1, 2] may be placed in any level.

For a bundle type τ , we define its leftmost level, denoted leftlevel(τ), as the largest j ≤ ℓ − 1
such that level j contains a bundle of type τ . (If no type-τ bundles currently exist in memory, then
leftlevel(τ) := −∞.)

4.2 Implementation

At the very beginning, run Initialize (Algorithm 2).

Insertion and deletion. Now we describe how our allocator handles updates (i.e., insertions and
deletions). The implementations are given in Algorithm 3 and Algorithm 4, respectively. To slightly
unify the descriptions of these two procedures, we introduce a global variable Y to represent the set
of objects that are yet to be added to memory. More specifically:

• For insertion, we set Y to contain the current object being inserted.
• In the case of deleting x, whose scale is (2i∗ , 2i∗+1], we first perform the substitution strategy,

so that the bundle B containing x now appears in level i∗ (namely the rightmost level allowed
to contain an object of this scale). Then, remove the entire bundle B from memory (creating
a temporary gap in level i∗), and set Y ← B \ {x}, indicating that these objects should be
moved back into memory later.

Both types of updates finish by invoking the Rebuild(j∗) procedure (Algorithm 5) for some
j∗ ∈ {0, 1, . . . , ℓ − 1}, whose behavior is to reorganize objects in levels j∗, j∗ − 1, . . . , 1, 0 together
with the objects from Y , without modifying the levels to the left of j∗. Here, j∗ is determined in a
way so that levels further to the left are less frequently rebuilt, as follows: For each scale (2i, 2i+1],
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maintain a counter ci, initialized uniformly at random from Z ∩ [0, 2ℓ−1−i).6 At the end of each
update of object scale (2i

∗
, 2i

∗+1], we first increment the counter ci∗ and then invoke Rebuild(j∗)
for the largest integer j∗ ∈ [i∗, ℓ− 1] such that 2j

∗−i∗ divides ci∗ .

Algorithm 2: Initialize

1 for i ∈ {0, 1, . . . , ℓ− 1} do
2 ci ← random integer from [0, 2ℓ−1−i) // a global counter

3 τnew ← 0 // a global counter

Algorithm 3: Insert(x)

1 Suppose µ(x) ∈ (2i
∗
, 2i

∗+1]
2 ci∗ ← ci∗ + 1
3 Y ← {x} // a global variable
4 Rebuild(j∗), where j∗ is the largest integer j∗ ∈ [i∗, ℓ− 1] such that 2j

∗−i∗ divides ci∗

Algorithm 4: Delete(x)

1 Suppose µ(x) ∈ (2i
∗
, 2i

∗+1]
2 ci∗ ← ci∗ + 1
3 Let B be the bundle containing x
4 if B is not in level i∗ then

// B must be in levels {ℓ− 1, ℓ− 2, . . . , i∗ + 1}
5 Let B′ be a bundle in level i∗ such that type(B′) = type(B) (which must exist by

Corollary 4.4)
6 Swap B and B′ in memory

// Now, B is in level i∗, and x is in B.
7 Remove B from memory
8 Y ← B \ {x} // a global variable
9 Rebuild(j∗), where j∗ is the largest integer j∗ ∈ [i∗, ℓ− 1] such that 2j

∗−i∗ divides ci∗

Rebuild. During Rebuild(j∗) (Algorithm 5), we rebuild the levels j∗, j∗ − 1, . . . , 1, 0 and also
add the objects from Y into them, without modifying the remaining levels ℓ − 1, ℓ − 2, . . . , j∗ + 1
on the left. For a bundle B in levels {j∗, j∗ − 1, . . . , 1, 0}, if there is another bundle B′ in levels
{ℓ−1, ℓ−2, . . . , j∗+1} with type(B′) = type(B), then we keep B as an old bundle (since it may still
be useful for performing the substitution strategy in the future); otherwise, we unbundle B and add
its objects to Y . We partition the objects in Y into new bundles. We then place the bundles (both
new and old) back into memory following a right-to-left greedy rule similar to that in the warm-up

6This is the only randomized part in our proof of Lemma 4.1. If we instead initialize ci ← 0 for all i, then we
would obtain a deterministic allocator for object sizes [poly(ϵ)M,M) with polylogarithmic amortized overhead. We
do not know how to extend this amortized derandomization to all object sizes in (0,M), since the tiny objects are
handled by Kuszmaul’s allocator [Kus23] which seems inherently randomized.
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Algorithm 5: Rebuild(j∗) where 0 ≤ j∗ ≤ ℓ− 1

1 Told := {type τ : leftlevel(τ) > j∗}
2 B ← ∅ // a collection of bundles, initially empty
3 for each bundle B in levels {j∗, j∗ − 1, . . . , 0} do
4 Remove B from the memory
5 if type(B) /∈ Told then Y ← Y ⊔B // Unbundle B and add all its objects to Y
6 else B ← B ⊔ {B} // B remains as an old bundle, which we add to B
// Now, the memory in levels {j∗, j∗ − 1, . . . , 0} has become empty.

7 B ← B ⊔CreateBundles(Y ), and then reset Y ← ∅.
8 for each bundle type τ do
9 Bτ := {B ∈ B : type(B) = τ}

10 Let (2i, 2i+1] be the scale of objects in type-τ bundles

11 Define sequence (ni, ni+1, . . . , nj∗) by nj =

{
2max{j−i,1} j ̸= j∗

+∞ j = j∗

// (ni, ni+1, . . . , nj∗) = (2, 2, 4, 8, 16, . . . ,+∞)
12 for j ← i, i+ 1, . . . , j∗ do
13 If there are n unassigned bundles in Bτ , assign min{n, nj} of them to level j in

memory

proof of Proposition 1.5. Here, we assign each bundle to one of the levels in {j∗, j∗ − 1, . . . , 1, 0};
bundles within the same level may be placed in arbitrary order.

We have the following basic observations:

Observation 4.2. Rebuild(j∗) does not modify levels {ℓ− 1, ℓ− 2, . . . , j∗ + 1} in memory.

Observation 4.3. After every update (Insert(·) or Delete(·)) finishes, the memory satisfies the
prefix property.

Proof. Right before invoking Rebuild(j∗) in Delete(x), the levels ℓ − 1, ℓ − 2, . . . , i∗ + 1 satisfy
the prefix property, because the deletion may only creates a gap in level i∗. Since j∗ ≥ i∗, after
Rebuild(j∗), the memory satisfies the prefix property again.

For Insert(x), the proof is straightforward.

4.3 Invariants

Let C1 ≥ 1, C2 ≥ 1 be the constants from Lemma 3.4. Let C3 be a constant (depending on C1, C2)
such that

C3 ≥ 3C1 log(12C2C3). (3)

Below, we state the three main invariants which the allocator satisfies at the end of every update
(Insert(·) or Delete(·)). Property 1 ensures that there are few distinct types of bundles at any
time. The remaining two invariants are analogous to those appearing in the warm-up proof of
Proposition 1.5: Property 2 gives an upper bound on the total size of each level, and Property 3
guarantees enough supply of bundles of each type for performing the substitution strategy.
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Property 1. For every i, j with ℓ ≥ j ≥ i ≥ 0, the number of distinct types among bundles of scale
(2i, 2i+1] in levels {ℓ− 1, ℓ− 2, . . . , j} is at most

C3(ℓ− j)(log ℓ+ log log ϵ−1)2.

Property 2. Let s(i, j) denote the total size of objects of scale (2i, 2i+1] that are in levels {j−1, j−
2, . . . , i}.

Then, for every i, j with ℓ ≥ j > i ≥ 0,

s(i, j) ≤ 2j+1 · C2 log ϵ
−1 · C3ℓ(log ℓ+ log log ϵ−1)2 + (ci mod 2j−i) · 2i+1. (4)

In particular,
s(i, j) ≤ 2j · 3C2C3ℓ(log ϵ

−1)(log ℓ+ log log ϵ−1)2 − 2i+1.

Property 3. Let v(τ, j) denote the number of type-τ bundles in levels {j − 1, j − 2, . . . , 0}.
Then, for every bundle type τ with object scale (2i, 2i+1], and every j such that leftlevel(τ) ≥

j > i,
v(τ, j) ≥ 2j−i − (ci mod 2j−i) ≥ 1. (5)

Corollary 4.4. At Algorithm 4 of Delete(x) (Algorithm 4), the substitute bundle B′ always exists.

Proof. Let τ = type(B), and recall that the scale of τ is (2i
∗
, 2i

∗+1]. Since B can only be in levels
{ℓ− 1, ℓ− 2, . . . , i∗ + 1}, we have leftlevel(τ) ≥ i∗ + 1. Hence, by Property 3 with τ and j = i∗ + 1,
we have v(τ, i∗+1) ≥ 1. Note that v(τ, i∗+1) counts exactly the number of type-τ bundles in level
i∗, since objects of scale (2i

∗
, 2i

∗+1] can only appear in levels {ℓ− 1, ℓ− 2, . . . , i∗}. Therefore, there
exists at least one type-τ bundle B′ in level i∗.

We use time step t to refer to the state at the end of the t-th update (Insert(·) or Delete(·))
of the update sequence. Initially at time 0, the memory is empty and Properties 1 to 3 all hold
vacuously. We now use induction on t to prove that these invariants hold at every time step t ≥ 1.

Proof of Property 1. To prove Property 1 for i, j at any time step t, suppose the most recent execu-
tion of Rebuild(j∗) such that j∗ ≥ j finished at time t′ ≤ t; if no such execution of Rebuild(j∗)
has occurred, let t′ = 0. Since the levels {ℓ − 1, ℓ − 2, . . . , j} have never been modified after time
t′, it suffices to prove the claimed upper bound at time t′. If t′ = 0, then the bound immediately
holds. Henceforth, assume t′ ≥ 1.

Focus on the execution of Rebuild(j∗) at time t′. We now separately bound the number of old
types τ ∈ Told and new types τ /∈ Told of scale (2i, 2i+1], and add them up.

• Recall that τ is an old type if and only if leftlevel(τ) ≥ j∗ + 1. Since Property 1 held at time
step t′ − 1 for the levels {ℓ− 1, ℓ− 2, . . . , j∗ +1}, this implies that the number of old types of
scale (2i, 2i+1] is at most C3(ℓ− j∗ − 1)(log ℓ+ log log ϵ−1)2.

• It remains to bound the number of new types of scale (2i, 2i+1] created by CreateBundles(Y ).
We focus on the subset Yi ⊆ Y containing objects of scale (2i, 2i+1] only. By definition, all
objects of Yi were in levels {j∗, j∗− 1, . . . , i} at time t′− 1, with the possible exception of one
additional object if the t′-th update is an insertion. Since Property 2 held for scale (2i, 2i+1]
and levels {j∗, j∗ − 1, . . . , i} at time t′ − 1, this implies that the objects in Yi have total size
at most

2j
∗+1 · 3C2C3ℓ(log ϵ

−1)(log ℓ+ log log ϵ−1)2.
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Consequently,
|Yi| ≤ 2j

∗−i · 6C2C3ℓ(log ϵ
−1)(log ℓ+ log log ϵ−1)2.

For a new type τ , if a level j ∈ [i, j∗] receives at least one type-τ bundle at the end of
the for loop in Algorithm 5, then the number of type-τ bundles, |Bτ |, must be at least

1 + nj−1 + nj−2 + · · · + ni =

{
1 + 2j−i i < j

1 i = j
≥ 2j−i. On the other hand, by definition

of CreateBundles(Y ) and Lemma 3.4, Item 3, the number of types τ with at least 2j−i

bundles is at most

C1 log
(
2|Yi|/2j−i

)
log log ϵ−1

≤ C1 log
(
2j

∗−j · 12C2C3ℓ(log ϵ
−1)(log ℓ+ log log ϵ−1)2

)
log log ϵ−1

≤ C1(j
∗ − j + log(12C2C3) + 3 log ℓ+ 3 log log ϵ−1) log log ϵ−1

≤ C3(j
∗ − j + 1)(log ℓ+ log log ϵ−1)2. (by C3 ≥ 3C1 log(12C2C3))

Thus, the number of new types of scale (2i, 2i+1] in level j is at most C3(j
∗ − j + 1)(log ℓ +

log log ϵ−1)2.

Summing up the counts of old and new types proves the claimed upper bound C3(ℓ − j)(log ℓ +
log log ϵ−1)2.

Proof of Property 2. To prove the claimed bound on s(i, j) at any time step t, suppose the most
recent execution of Rebuild(j∗) such that j∗ ≥ j finished at time t′ ≤ t; if no such execution of
Rebuild(j∗) has occurred, let t′ = 0. By definition, t′ is no earlier than the most recent time when
the counter ci became divisible by 2j−i. Hence, after time t′, there have been at most (ci mod 2j−i)
updates of object scale (2i, 2i+1], where ci denotes the counter at current time t.

Let s′(i, j) denote the total size of objects of scale (2i, 2i+1] in levels {j − 1, j − 2, . . . , i} at time
t′. If t′ = 0, then s′(i, j) = 0. Now we bound s′(i, j) in the t′ ≥ 1 case. Focus on the execution of
Rebuild(j∗) at time t′. By the placement rule at the end of Rebuild(j∗), since j∗ > j − 1, each
bundle type τ of object scale (2i, 2i+1] contributes at most ni + ni+1 + · · ·+ nj−1 = 2j−i bundles to
the levels {j− 1, j− 2, . . . , i}. By Property 1, the number of distinct bundle types of scale (2i, 2i+1]
is at most C3ℓ(log ℓ + log log ϵ−1)2. By Lemma 3.4, every bundle created by CreateBundles(·)
contains at most C2 log ϵ

−1 objects. By multiplying these quantities together, we get the following
upper bound:

s′(i, j) ≤ C3ℓ(log ℓ+ log log ϵ−1)2 · 2j−i · C2 log ϵ
−1 · 2i+1.

After time t′, the levels {ℓ− 1, ℓ− 2, . . . , j} have never been modified; in particular, we have not
moved any objects from levels {ℓ− 1, ℓ− 2, . . . , j} to levels {j − 1, j − 2, . . . , 0}. Thus, the increase
s(i, j) − s′(i, j) can only be caused by the at most (ci mod 2j−i) objects of scale (2i, 2i+1] inserted
after time t′. Thus, s(i, j) ≤ s′(i, j) + (ci mod 2j−i) · 2i+1, finishing the proof of Property 2.

Proof of Property 3. To prove the claimed bound on v(τ, j) at any time step t, suppose the most
recent execution of Rebuild(j∗) such that j∗ ≥ j finished at time t′ ≤ t; if no such execution of
Rebuild(j∗) has occurred, let t′ = 0. Recall from the assumptions that type-τ bundles have objects
of scale (2i, 2i+1], where i < j. As in the proof of Property 2, we know that after time t′ there have
been at most (ci mod 2j−i) updates of object scale (2i, 2i+1].
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After time t′, the levels {ℓ−1, ℓ−2, . . . , j} have never been modified. Hence, by our assumption
that leftlevel(τ) ≥ j holds at time t, we know leftlevel(τ) ≥ j also held at time t′. In particular,
this means t′ ≥ 1.

Let v′(τ, j) denote the number of type-τ bundles in levels {j − 1, j − 2, . . . , 0} at time t′. We
now show that v′(τ, j) ≥ 2j−i. To show this, focus on the execution of Rebuild(j∗) at time t′, and
separately analyze two cases depending on whether τ is a new type:

• Case τ /∈ Told (i.e., τ is a new type created by CreateBundles):
Suppose the for loop at Algorithm 5 put all the type-τ bundles in the levels {j0, j0− 1, . . . , i}
but not in level j0+1. Then, leftlevel(τ) = j0 ∈ [i, j∗]. Since we assumed j ≤ leftlevel(τ) = j0,
we must have v′(τ, j) = ni + ni+1 + · · ·+ nj−1 = 2j−i.

• Case τ ∈ Told:
We know leftlevel(τ) ≥ j∗ + 1 by the definition of Told. By induction, we can assume as an
inductive hypothesis that Property 3 held at time t′ for v′(τ, ·) whenever the second argument
is strictly larger than j. In particular, since leftlevel(τ) ≥ j∗ + 1 > j, this implies

v′(τ, j∗ + 1) ≥ 2j
∗+1−i − (c′i mod 2j

∗+1−i),

where c′i is the counter at time t′. By definition of j∗ at time t′, we know c′i is divisible
by 2j

∗−i but not by 2j
∗−i+1, so c′i mod 2j

∗+1−i = 2j
∗−i. Hence v′(τ, j∗ + 1) ≥ 2j

∗+1−i −
2j

∗−i = 2j
∗−i; in other words, in the execution of Rebuild(j∗), the number of old type-τ

bundles in levels {j∗, j∗ − 1, . . . , 0} is at least |Bτ | ≥ 2j
∗−i. Thus, by the placement rule

at the end of Rebuild(j∗), the number of bundles assigned to levels {j − 1, j − 2, . . . , i} is
v′(τ, j) = min{|Bτ |, ni + ni+1 + · · ·+ nj−1} = min{|Bτ |, 2j−i} ≥ min{2j∗−i, 2j−i} = 2j−i.

Thus, in both cases we have v′(τ, j) ≥ 2j−i as claimed.
After time t′, the levels {ℓ− 1, ℓ− 2, . . . , j} have never been modified; in particular, we have not

moved any objects from levels {j − 1, j − 2, . . . , 0} to levels {ℓ− 1, ℓ− 2, . . . , j}. Thus, the decrease
v′(τ, j)− v(τ, j) can only be caused by the at most (ci mod 2j−i) objects of scale (2i, 2i+1] deleted
after time t′, each of which may destroy one type-τ bundle. Hence, v(τ, j) ≥ v′(τ, j)−(ci mod 2j−i),
finishing the proof of Property 3.

Therefore, our allocator is correct. Finally, we bound the worst-case expected overhead.

Proof of Lemma 4.1. By definition, Rebuild(j∗) only moves objects in levels {j∗, j∗ − 1, . . . , 0},
whose total size can be bounded by summing up Property 2 for j = j∗ + 1 over all scales (2i, 2i+1]
where 0 ≤ i ≤ j∗, giving the upper bound O(2j

∗
ℓ2(log ϵ−1)(log ℓ + log log ϵ−1)2). The total size of

objects moved by Insert(·) or Delete(·) is dominated by that of Rebuild(j∗).
For every update of scale (2i

∗
, 2i

∗+1] in the update sequence, since we randomly initialized

the counter ci∗ , the probability that it triggers Rebuild(j∗) equals

{
2i

∗−j∗−1 i∗ ≤ j∗ < ℓ− 1

2i
∗−ℓ+1 j∗ = ℓ− 1

≤

2i
∗−j∗ . Hence, the expected switching cost for this update is∑

i∗≤j∗≤ℓ−1

2i
∗−j∗ ·O(2j

∗
ℓ2(log ϵ−1)(log ℓ+ log log ϵ−1)2)

= O(2i
∗
ℓ3(log ϵ−1)(log ℓ+ log log ϵ−1)2).

Dividing by the size Θ(2i
∗
) of the updated object gives the expected overhead bound O(ℓ3(log ϵ−1)(log ℓ+

log log ϵ−1)2) as claimed.
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5 Lower bounds

In this section, we prove Theorem 1.3 and Theorem 1.4. Both our lower bounds are proved with an
oblivious adversary, i.e., our hard update sequences are fixed before starting the allocator, instead
of being generated adaptively based on the current memory state.

Bounded ratio property. The object sizes in our hard update sequences are always in the
interval [µ,Cµ] for some µ > 0 and an absolute constant C > 1. This allows us to work with
the more convenient notion of (unnormalized) switching cost, namely the total size of changed
(moved/inserted/deleted) objects for handling an update x, and only lose a constant factor C when
normalized by the size of x to get the overhead factor.

Full-memory assumption. In our proofs, we design hard instances in the original discrete set-
ting (instead of the real-interval setting used in Section 4) with a memory of M slots indexed by
0, 1, . . . ,M − 1. Moreover, by Observation 2.1, Item 2, we are allowed to make all the M memory
slots fully occupied in the hard instances. Formally, we actually prove the following two theorems
which imply Theorem 1.3 and Theorem 1.4. Here, all hidden constants are absolute.

Theorem 5.1. For every M0 ∈ Z+, there exists an integer M ∈ Θ(M0) such that any allocator
that handles instances with M memory slots and object sizes Θ(M/ logM) must have worst-case
expected switching cost Ω(M) (against an oblivious adversary).

Theorem 5.2. For every M0 ∈ Z+, there exists an integer M ∈ Θ(M0) such that any allocator that
handles instances with M memory slots and object sizes Θ(M4/7) must have worst-case expected
squared switching cost Ω(M9/7) (against an oblivious adversary).

We suspect that the theorems above could be strengthened to hold for all M ≥ M0, but our
current proofs do not seem to directly imply that.

We can immediately derive Theorem 1.3 from Theorem 5.1 as follows.

Proof of Theorem 1.3 assuming Theorem 5.1. Given ϵ > 0 sufficiently small, pick an integer M ∈
Θ(1/ϵ) so that M ≤ 1/(3ϵ) and Theorem 5.1 holds for M . Since the object size in Theorem 5.1
is Θ(M/ logM), the required expected overhead factor is Ω(M)/Θ(M/ logM) = Ω(logM) =
Ω(log ϵ−1). By Observation 2.1, Item 2 (which can apply to expected overhead as well), we conclude
that any allocator that supports load factor 1 − ϵ ≥ 1 − 1

3M must also incur expected overhead at
least Ω(log ϵ−1).

Analogously, Theorem 5.2 implies Theorem 1.4 (we omit the details).
Theorem 5.1 and Theorem 5.2 are proved in Section 5.2 and Section 5.3 respectively.

5.1 Basic definitions

We start by introducing a few definitions which will be used in both Section 5.2 and Section 5.3.
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Size profile S and difference δ(S1, S2). In order to design hard input sequences of updates,
we actually design hard sequences of full-memory size profiles (which could then be translated into
sequences of updates).

A full-memory size profile (or size profile for short) is a multiset S of positive integers whose
sum equals M , which correspond to the sizes of all live objects at a certain time step. (The labels
of the objects are unimportant, since we do not have to distinguish two objects of the same size.)
Define the difference between two multisets S1, S2 as δ(S1, S2) :=

∑
x |mS1(x) − mS2(x)|, where

mS(x) denotes the multiplicity of x in the multiset S.
A sequence of size profiles (S1, S2, . . . , Sk) naturally induces a shortest update sequence that

realizes them in order (starting from an empty memory), whose length is given by δ(∅, S1) +∑k−1
i=1 δ(Si, Si+1).7

As an example, for two size profiles S1 = {2, 3}, S2 = {1, 2, 2} with memory size M = 5, the
sequence (S1, S2) can be realized by the following shortest update sequence starting from an empty
memory, whose length is δ(∅, S1) + δ(S1, S2) = 2 + 3 = 5:

• Insert x with µ(x) = 2.
• Insert y with µ(y) = 3 (realizing size profile S1).
• Delete y.
• Insert z with µ(z) = 1.
• Insert w with µ(w) = 2 (realizing size profile S2).

Memory state ϕ, difference ∆(ϕ, ϕ′), and maximal changed intervals. To analyze the
necessary cost incurred by the allocator, we are primarily interested in the memory states (i.e.,
allocations) made by the allocator when the memory is full.

At full memory, the memory state ϕ can be uniquely described by the list of live object sizes
ordered by their locations from left to right. For example, in the full memory state ϕ = (2, 5, 3, 1, 3)
(with M = 14 and size profile {1, 2, 3, 3, 5}), the size-5 object has location 2, i.e., it is allocated to
the memory slots with indices in the interval [2, 2 + 5). See visualization in Fig. 2.

We now define the difference between two full memory states, which is a lower bound on the
total switching cost required to transform one state to the other.

Recall that a size-µ object is said to have location p if it is allocated to the interval [p, p+ µ).

Definition 5.3 (∆(ϕ, ϕ′)). Given two full memory states ϕ, ϕ′, we say a size-µ object at location p
in ϕ is unchanged, if ϕ′ also has a size-µ object at location p; otherwise, we say the object is changed.
Then, define the difference ∆(ϕ, ϕ′) as the total size of changed objects in ϕ.

Observation 5.4. For two full memory states ϕ, ϕ′, the total switching cost to transform ϕ to ϕ′ is
at least ∆(ϕ, ϕ′).

We now define the useful notion of maximal changed intervals, which we borrow from the previous
work [FKSW24].

Definition 5.5 (Maximal changed intervals). In the same setup as Definition 5.3, we say [L,R) ⊆
[0,M) is a maximal changed interval if it is an inclusion-maximal interval such that every object in
ϕ intersecting this interval is changed.

7If there are multiple such shortest update sequences, we fix an arbitrary one of them.
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By definition, [0,M) is partitioned into the disjoint union of the unchanged objects and the
maximal changed intervals. In particular, ∆(ϕ, ϕ′) equals the total length of the maximal changed
intervals.

We remark that the definitions of ∆(ϕ, ϕ′), unchanged objects, and maximal changed intervals
are symmetric with respect to ϕ and ϕ′.

See Fig. 2 for an example with visualization that illustrates the definitions above.

5.2 Logarithmic lower bound for expected overhead

In this section, we prove Theorem 5.1 (which implies Theorem 1.3).
We will define a hard distribution over sequences of full-memory size profiles. We first specify

the memory size M , and the family of size profiles that we will use.
Let parameter k be a positive integer to be determined later.

Definition 5.6 (Size profile Sπ). For a permutation π : [k]→ [k], define the size profile

Sπ = {22k+1 + 2k+i + 2π(i) : i ∈ {1, 2, . . . , k}},

which consists of k distinct-sized objects of total size

M := k · 22k+1 +
k∑

i=1

2k+i +
k∑

i=1

2i = (k + 1)22k+1 − 2.

Note that all object sizes are in the interval [22k+1, 22k+2).

By the definition above, the number of memory slots is M ∈ Θ(k22k). Hence, given M0 ≥ 1, we
can choose some k ∈ 1

2(logM0 − log logM0) +O(1) so that M ∈ Θ(M0). Then, the object sizes are
in [µ, 2µ) where µ ∈ Θ(M/ logM). Recall that our goal is to prove a worst-case expected switching
cost lower bound of Ω(M) in this full-memory setting.

We have the following simple but crucial lemma:

Lemma 5.7. For two permutations π, π′ : [k]→ [k], suppose two non-empty subsets X ⊆ Sπ, X
′ ⊆

Sπ′ have equal sum
∑

x∈X x =
∑

x′∈X′ x′. Then, there is a set J ⊆ [k] such that

X = {22k+1 + 2k+i + 2π(i) : i ∈ J}, (6)

X ′ = {22k+1 + 2k+i + 2π
′(i) : i ∈ J}, (7)

and
{π(i) : i ∈ J} = {π′(i) : i ∈ J}. (8)

Proof. Consider the binary representation of
∑

x∈X x, restricted to the part between the (k + 1)-st
bit and the 2k-th bit (inclusive; the i-th bit has binary weight 2i). By definition of Sπ, the positions
of 1s among the bits in this part uniquely determine the set J ⊆ [k] that satisfies Eq. (6), since
there are no carries from the lower binary bits in the summation. Since this sum is the same as∑

x′∈X′ x′, we know that the same J should also satisfy Eq. (7).
Similarly, the part between the 1-st bit and the k-th bit in the binary representation of

∑
x∈X x

can uniquely determine the set {π(i) : i ∈ J}. Since this sum is the same as
∑

x′∈X′ x′, we conclude
that Eq. (8) must hold.
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Now we are ready to prove Theorem 5.1.

Proof of Theorem 5.1. We define a distribution over length-two sequences of size profiles, (Sι, Sπ′),
where ι : [k] → [k] is the identity permutation ι(i) = i, and let π′ : [k] → [k] be modified from ι by
swapping two random coordinates, that is, we independently pick two uniformly random distinct
indices a, b ∈ [k] and define

π′(i) :=


a if i = b,

b if i = a,

i otherwise.

Note that δ(Sι, Sπ′) = 4, since the adversary can transform Sι to Sπ′ by first deleting the two objects
of sizes

x := 22k+1 + 2k+a + 2a, y := 22k+1 + 2k+b + 2b

, and then inserting another two objects of sizes

x′ := 22k+1 + 2k+b + 2a, y′ := 22k+1 + 2k+a + 2b.

Initially, the size profile Sι can be realized by inserting k objects into the empty memory.
We run the randomized allocator on the random update sequence induced by the sequence of

size profiles (Sι, Sπ′). We compare the full memory states ϕι and ϕπ′ corresponding to the size
profiles Sι and Sπ′ respectively.

Claim 5.8. There is a maximal changed interval between ϕι and ϕπ′ that contains both the size-x
and size-y objects of ϕι.

Proof. The size-x and size-y objects appear in ϕι but no longer appear in ϕπ′ , so both of them are
changed objects, and each should be in some maximal changed interval (Definition 5.5). Let [L,R)
be the maximal changed interval that contains the size-x object in ϕι. This interval consists of a
subset of changed objects in ϕι including the size-x object. Hence, the interval length R−L equals
the sum of some subset X ⊆ Sι, where X ∋ x. Similarly, this interval length R− L also equals the
sum of some subset X ′ ⊆ Sπ′ . Hence,

∑
x∈X x =

∑
x′∈X′ x′.

We can now apply Lemma 5.7 to ι, π′ and X,X ′, and obtain J ⊆ [k]. From x ∈ X and Eq. (6),
we get a ∈ J ; in particular, ι(a) ∈ {ι(i) : i ∈ J}. Then, by Eq. (8), we have ι(a) ∈ {π′(i) : i ∈ J}
as well. Since ι(a) = a = π′(b), this implies π′(b) ∈ {π′(i) : i ∈ J}, and thus b ∈ J . By b ∈ J and
Eq. (6), we get y ∈ X. Therefore, the size-y object is also contained in the interval [L,R), which
proves the claim.

By the claim above, all objects in ϕι located between the size-x and size-y objects (inclusive)
are changed objects, whose sizes should contribute to ∆(ϕι, ϕπ′). Since a ̸= b ∈ [k] are uniformly
randomly chosen by the adversary and are unknown to the allocator in advance, one can show that
the expected number of objects in ϕι located between the size-x and size-y objects (inclusive) equals
k+4
3 . Since all object sizes are in [µ, 2µ] = [22k+1, 22k+2], we get that ∆(ϕι, ϕπ′) has expectation at

least k+4
3 µ. Hence, by Observation 5.4, the expected total switching cost to transform ϕι to ϕπ′ is at

least k+4
3 µ. Since this transformation is completed within δ(Sι, Sπ′) = 4 updates, we know the worst-

case expected switching cost achieved by the allocator must be at least k+4
3 µ/δ(Sι, Sπ′) ≥ Ω(M).

This finishes the proof of Theorem 5.1.
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5.3 Polynomial lower bound for expected squared overhead

In this section, we prove Theorem 5.2 (which implies Theorem 1.4). We described the intuition in
the overview section (Section 1.2). Now we outline the structure of the formal proof:

• In Section 5.3.1, we construct the family {Si,j} of size profiles used in our proof. We establish
the property of finger objects as mentioned in the overview section.

• In Section 5.3.2, we use {Si,j} to design hard update sequences. These sequences are organized
as a tree T , where each node corresponds to an Si,j . The tree T has a spine and many branches.
The “surprise inspection” mentioned in the overview intuitively corresponds to branching off
from a random point on the spine.

• In Section 5.3.3, assuming a good randomized allocator Arand exists, we use Yao’s principle
to fix a certain good deterministic allocator A. Then, each node on the tree T is associated
with a memory state, namely the state reached by running A on the update sequence induced
by the root-to-node path on T . From the performance of A, we obtain certain inequalities
involving the differences between these memory states.

• In Section 5.3.4, we use the properties of finger objects to show that these inequalities cannot
hold, reaching a contradiction. Hence the purported allocator Arand cannot exist, finishing
the proof.

5.3.1 Size profiles and their properties

We construct the family of size profiles that we will use in our hard instances, and prove its main
property in Lemma 5.14. The construction is based on two integer parameters P > Q ≥ 1, which
will be determined later.

We need a standard construction of several integers whose small-coefficient linear combinations
are all distinct:

Lemma 5.9. Given n1 ≥ n2 ≥ n3 ≥ n4 ≥ 1, there exist positive integers a1, a2, a3, a4 ∈ Θ(n2n3n4),
such that the integers k1a1 + k2a2 + k3a3 + k4a4 for ki ∈ Z ∩ [−ni, ni] are all distinct. Moreover,
a1 < a2 < a3 < a4 ≤ 2a1.

Proof. Let n′
i := 2ni + 1 for all i ∈ [4]. Let

a1 := n′
2n

′
3n

′
4

a2 := a1 + n′
3n

′
4

a3 := a2 + n′
4

a4 := a3 + 1,

which clearly satisfy the “moreover” part of the lemma statement.
Suppose to the contrary that k1a1 + · · · + k4a4 = k′1a1 + · · · + k′4a4 for some (k1, . . . , k4) ̸=

(k′1, . . . , k
′
4) where ki, k′i ∈ Z∩[−ni, ni]. Then, m1a1+· · ·+m4a4 = 0, where mi = ki−k′i ∈ [−2ni, 2ni]

and mi are not all zero. Since a1 ≡ a2 ≡ a3 ≡ 0 (mod n′
4) and a4 ≡ 1 (mod n′

4), we obtain
0 = m1a1 + · · ·+m4a4 ≡ m4 (mod n′

4). Since |m4| ≤ 2n4 = n′
4 − 1, we must have m4 = 0.

Then, m1a1 + m2a2 + m3a3 = 0. We divide both sides by n′
4, and note that a1

n′
4
≡ a2

n′
4
≡ 0

(mod n′
3),

a3
n′
4
≡ 1 (mod n′

3). Using the same argument as the previous paragraph, we get m3 = 0.
Iterating the argument again gives m2 = 0, at which point we conclude m1, . . . ,m4 must all be zero,
a contradiction. Thus a1, a2, a3, a4 satisfy the desired conditions.
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Let P > Q ≥ 1 be integer parameters to be determined later.
Use Lemma 5.9 to construct four positive integers a, b, c, d such that the integers

k1a+ k2b+ k3c+ k4d : k1, k2 ∈ Z ∩ [−3P, 3P ], k3 ∈ Z ∩ [0, 2Q], k4 ∈ {0, 1} (9)

are all distinct, and
µ := a < b < c < d ≤ 2µ (10)

where µ ∈ Θ(PQ). We define the number of memory slots in our hard instance to be

M := Pa+Qc+ d ∈ [Pµ, 3Pµ] ⊂ Θ(P 2Q). (11)

Definition 5.10 (Size profile Si,j). For integers 0 ≤ i ≤ P, 0 ≤ j ≤ Q, define the full-memory size
profile Si,j as the multiset consisting of:

• i size-a objects,
• j size-c objects,
• h size-b objects, where h := h(i, j) := ⌊(M − d − ia − jc)/b⌋ (by Eq. (11), 0 ≤ h ≤ 3P must

hold), and
• one remaining object (termed the finger object) of size M − ia− jc− hb.

The finger object size f in Definition 5.10 satisfies

f − d = (M − d− ia− jc)− ⌊(M − d− ia− jc)/b⌋ · b ∈ [0, b),

that is, f ∈ [d, d+ b). Combining this bound with Eq. (10) yields the following basic observations:

Observation 5.11. Every object in Si,j has size in [µ, 4µ].

Observation 5.12. The finger object in Si,j has size different from a, b, and c (which justifies its
distinguished role).

We now describe the arithmetic structure of subset sums of object sizes in Si,j :

Lemma 5.13. Let X be any subset of the multiset Si,j. Then, there exists a unique tuple (k1, k2, k3, k4)
in the range k1 ∈ Z ∩ [0, 2P ], k2 ∈ Z ∩ [−3P, 3P ], k3 ∈ Z ∩ [0, 2Q], k4 ∈ {0, 1}, such that the sum of
X equals k1a+ k2b+ k3c+ k4d. Moreover, k4 = 1 if and only if X contains the finger object of Si,j.

Proof. Given X ⊆ Si,j , we first show that there exists some (k1, k2, k3, k4) from the specified range
such that the sum of X equals k1a+ k2b+ k3c+ k4d.

Recall from Definition 5.10 that the numbers of size-a, size-b, and size-c objects in Si,j are i ≤ P ,
h ≤ 3P , and j ≤ Q respectively. Denote the number of size-a, size-b, and size-c objects contained
in X ⊆ Si,j by m1 ∈ [0, P ],m2 ∈ [0, 3P ], and m3 ∈ [0, Q], respectively. Now consider two cases:

• If X does not contain the finger object of Si,j , then the sum of X equals m1a +m2b +m3c,
so (k1, k2, k3, k4) := (m1,m2,m3, 0) satisfies the requirement and is in the specified range.

• Otherwise, X contains the finger object of size f . By Definition 5.10 and Eq. (11), f =
M−ia−jc−hb = (P−i)a−hb+(Q−j)c+d. Thus, the sum of X equals f+m1a+m2b+m3c =
(P−i+m1)a+(m2−h)b+(Q−j+m3)c+d, so (k1, k2, k3, k4) := (P−i+m1,m2−h,Q−j+m3, 1)
satisfies the requirement and is in the specified range.
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Hence, the desired (k1, k2, k3, k4) in the specified range always exists. The uniqueness of this
tuple in this range then follows from the fact that all integers in Eq. (9) are distinct.

The “moreover” part of the lemma statement follows from the case distinction above and the
uniqueness of the tuple (k1, k2, k3, k4).

Lemma 5.13 implies the following crucial lemma, which is key to our proof:

Lemma 5.14. Let ϕ, ϕ′ be two memory states corresponding to two size profiles Si,j , Si′,j′ respec-
tively. Let [L,R) be a maximal changed interval between ϕ, ϕ′.

If [L,R) in ϕ does not contain the finger object of Si,j, then the multiset of object sizes in [L,R)
in ϕ′ is the same as that in ϕ (in particular, [L,R) in ϕ′ does not contain the finger object of Si′,j′).

See Fig. 4 for an example. By taking the contrapositive and using the symmetry between ϕ and
ϕ′ in the statement above, we have the following corollary: [L,R) in ϕ contains the finger object of
Si,j if and only if [L,R) in ϕ′ contains the finger object of Si′,j′ .

Proof of Lemma 5.14. Let X ⊆ Si,j and X ′ ⊆ Si′,j′ denote the multisets of sizes of the objects
contained in [L,R) in ϕ and ϕ′ respectively. Then the sum of X and the sum of X ′ both equal
R− L.

Suppose [L,R) in ϕ does not contain the finger object. Then, R − L = k1a + k2b + k3c + k4d,
where k4 = 0, and k1 ≤ P, k2 ≤ 3P, k3 ≤ Q denote the number of size-a, size-b, size-c objects in
X respectively. By the “moreover” part of Lemma 5.13 applied to X ′ and k4 = 0, we conclude
X ′ does not contain the finger object of Si′,j′ . Therefore, R − L = k′1a + k′2b + k′3c + 0 · d where
k′1 ≤ P, k′2 ≤ 3P, k′3 ≤ Q denote the number of size-a, size-b, size-c objects in X ′ respectively. By
the uniqueness in Lemma 5.13, we must have ki = k′i for all i ∈ [3], i.e., the multisets X and X ′ are
equal.

5.3.2 Hard update sequences

We now proceed to the construction of hard sequences of size profiles.

Definition 5.15 (Tree T and sequence σi,j). Define a rooted tree T with (P + 1)(Q + 1) nodes
uniquely labeled by the size profiles Si,j with 0 ≤ i ≤ P, 0 ≤ j ≤ Q (Definition 5.10), as follows (see
an illustration in Fig. 5): The root node is S0,Q. For each 1 ≤ i ≤ P , the parent of Si,Q is Si−1,Q.
For each 0 ≤ i ≤ P and 0 ≤ j ≤ Q− 1, the parent of Si,j is Si,j+1.

Define σi,j as the sequence of the size profiles corresponding to the path on T from the root to
Si,j , i.e.,

σi,j := (S0,Q, S1,Q, . . . , Si,Q, Si,Q−1, Si,Q−2, . . . , Si,j+1, Si,j).

Observe that the difference δ(·, ·) between two adjacent size profiles on T is always O(1):

Observation 5.16. For all 0 ≤ i ≤ P, 1 ≤ j ≤ Q, δ(Si,j , Si,j−1) ≤ 5.
For all 1 ≤ i ≤ P , δ(Si,Q, Si−1,Q) ≤ 5.

Proof. We prove the first claim only (the second claim follows from the same argument). By
Definition 5.10, Si,j has one more size-c object than Si,j−1, and the same number of size-a objects.
The difference between the counts of size-b objects is

0 ≤ h(i, j − 1)− h(i, j) = ⌊(M − d− ia− jc+ c)/b⌋ − ⌊(M − d− ia− jc)/b⌋ ≤ 2,

where the last step is due to c/b ≤ 2µ/µ = 2. Finally, Si,j and Si,j−1 each have a finger object of
possibly different size. Summing these differences together gives δ(Si,j , Si,j−1) ≤ 1 + 2 + 2 = 5.
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S0,Q

Root

S0,Q−1 . . . S0,j . . . S0,0

S1,Q S1,Q−1 . . . S1,j . . . S1,0

...

Si,Q Si,Q−1 . . . Si,j . . . Si,0

...

SP,Q SP,Q−1 . . . SP,j . . . SP,0

Spine σi,j

Figure 5: The rooted tree T defined in Definition 5.15. The sequence σi,j (shaded in gray) is the
tree path from the root node S0,Q to the node Si,j . The tree has a spine (shown in blue dashed box)
(S0,Q, S1,Q, . . . , SP,Q), and each node on the spine is the root of a branch (Si,Q, Si,Q−1, . . . , Si,0).

30



5.3.3 Fixing a deterministic allocator

We will use Yao’s principle to find a good deterministic allocator, and then analyze its behavior.
Before that, we make a few more definitions.

In a consecutive sequence of δ updates, if the allocator incurs switching costs C1, C2, . . . , Cδ,
respectively, then we can relate the total squared switching cost to the total switching cost by
Cauchy–Schwarz inequality:

(C1 + · · ·+ Cδ)
2 ≤ δ(C2

1 + · · ·+ C2
δ ). (12)

Definition 5.17 (Memory state ϕi,j and total squared switching cost κ(·, ·)). For a deterministic
allocator A, we use ϕA

i,j to denote the memory state after running A on the update sequence induced
by the size profile sequence σi,j (which ends at Si,j ; see Definition 5.15).

If Si′,j′ is the parent of Si,j on the tree T , then we define κA(ϕA
i′,j′ , ϕ

A
i,j) to be the total squared

switching cost incurred by A when transforming state ϕA
i′,j′ to state ϕA

i,j .

Using Cauchy–Schwarz inequality (Eq. (12)) and Observation 5.4, we have

∆(ϕA
i′,j′ , ϕ

A
i,j)

2 ≤ δ(Si′,j′ , Si,j) · κA(ϕA
i′,j′ , ϕ

A
i,j). (13)

Suppose there is a randomized allocator Arand (i.e., a probability distribution over deterministic
allocators A) with worst-case expected squared switching cost at most F 2µ2 on each update. If Si′,j′

is the parent of Si,j on the tree T , then running A ∼ Arand on the deterministic update sequence
induced by σi,j yields

E
A∼Arand

[κA(ϕA
i′,j′ , ϕ

A
i,j)] ≤ δ(Si′,j′ , Si,j) · F 2µ2,

which, combined with Eq. (13), gives

E
A∼Arand

[∆(ϕA
i′,j′ , ϕ

A
i,j)

2] ≤ δ(Si′,j′ , Si,j)
2 · F 2µ2 ≤ 25F 2µ2, (14)

where the last step is due to Observation 5.16.
Summing Eq. (14) along the spine of T gives

E
A∼Arand

[
P∑
i=1

∆(ϕA
i−1,Q, ϕ

A
i,Q)

2

]
≤ 25PF 2µ2. (15)

Summing Eq. (14) over all edges on all the (P + 1) branches of T gives

E
A∼Arand

 P∑
i=0

Q−1∑
j=0

∆(ϕA
i,j+1, ϕ

A
i,j)

2

 ≤ 25(P + 1)QF 2µ2. (16)

By adding Eq. (15) and Q−1 times Eq. (16), applying the linearity of expectation, followed by
averaging (Yao’s principle), we conclude that there exists a deterministic allocator A such that

P∑
i=1

∆(ϕA
i−1,Q, ϕ

A
i,Q)

2 +
1

Q

P∑
i=0

Q−1∑
j=0

∆(ϕA
i,j+1, ϕ

A
i,j)

2 ≤ 25(2P + 1)F 2µ2 ≤ 100PF 2µ2.
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In the following, we fix this deterministic allocator A, and drop the superscript A for simplicity. In
particular, the inequality above implies

P∑
i=1

∆(ϕi−1,Q, ϕi,Q)
2 ≤ 100PF 2µ2, (17)

and
P∑
i=0

Q−1∑
j=0

∆(ϕi,j+1, ϕi,j)
2 ≤ 100PQF 2µ2. (18)

The rest of our proof amounts to showing that the above two inequalities would lead to a
contradiction in a certain parameter regime. We summarize this as the following lemma:

Lemma 5.18. Assume

Q2 ≥ 5
√
PF, (19)

√
P ≥ 800QF. (20)

Then, there cannot exist memory states {ϕi,j}0≤i≤P,0≤j≤Q such that ϕi,j corresponds to the size
profile Si,j and both Eqs. (17) and (18) hold.

We now quickly derive Theorem 5.2 from Lemma 5.18.

Proof of Theorem 5.2 assuming Lemma 5.18. Given M0 ≥ 1, we choose F = ⌈M1/14
0 ⌉. Then, we

set the parameters P > Q ≥ 1 (used for the definitions in Sections 5.3.1 and 5.3.2) as follows to
satisfy Eq. (19) and Eq. (20):

Q := 4000F 2, (21)

P := 160Q3 = Θ(F 6). (22)

By Eq. (11), the number of memory slots in our construction is M = Θ(P 2Q) = Θ(F 14) ∈ Θ(M0),
and each object has size Θ(µ) = Θ(PQ) = Θ(F 8) = Θ(M4/7), as required.

Let Arand be a randomized allocator for instances with M memory slots and object sizes
Θ(M4/7). If it achieves worst-case expected squared switching cost at most F 2µ2, then by ear-
lier discussions in Section 5.3.3, there exist memory states {ϕi,j} (corresponding to size profiles Si,j)
such that both Eqs. (17) and (18) hold, but this is impossible due to Lemma 5.18. Hence, Arand

must have worst-case expected squared switching cost larger than F 2µ2 ≥ Ω(M9/7), as claimed.
This finishes the proof of Theorem 5.2.

5.3.4 Analysis

It remains to prove Lemma 5.18. We will assume the claimed memory states {ϕi,j}0≤i≤P,0≤j≤Q

exist, and derive a contradiction. In doing so, we will crucially use the property of the finger object
(Lemma 5.14).

Definition 5.19 (pi,j). Let pi,j denote the location of the finger object in the memory state ϕi,j .

We first show that all the size-c objects in the memory state ϕi,Q should be close to the finger
object:

32



Lemma 5.20. Define a radius parameter

ρ := 10
√
PQFµ. (23)

Then, for all 0 ≤ i ≤ P , in the memory state ϕi,Q, the interval [pi,Q−ρ, pi,Q+ρ) must fully contain
all the Q size-c objects.

Proof. Compare the memory states ϕi,Q and ϕi,0. Since ϕi,0 contains no size-c objects, we know
every size-c object in ϕi,Q must be contained in some maximal changed interval [Li, Ri) between
these two states; moreover, since [Li, Ri) in ϕi,0 contains no size-c objects, Lemma 5.14 implies that
[Li, Ri) must contain the finger objects in both memory states. In other words, all the size-c objects
of ϕi,Q are fully inside the maximal changed interval [L,R) that contains the finger objects. Since
pi,Q ∈ [L,R), it then suffices to show R− L ≤ ρ.

By Definition 5.5, R− L ≤ ∆(ϕi,Q, ϕi,0). Then, a very crude application of Eq. (18) gives

100PQF 2µ2 ≥
Q−1∑
j=0

∆(ϕi,j+1, ϕi,j)
2 (by Eq. (18))

≥ 1

Q

(Q−1∑
j=0

∆(ϕi,j+1, ϕi,j)
)2

(Cauchy–Schwarz)

≥
∆(ϕi,Q, ϕi,0)

2

Q
(triangle inequality)

≥ (R− L)2

Q
.

Therefore, (R− L)2 ≤ 100PQ2F 2µ2 ≤ ρ2 as claimed.

The following lemma intuitively says that it is expensive to move all of the size-c objects by a
large total distance.

Lemma 5.21. Let λi denote the sum of the locations of all the Q size-c objects in ϕi,Q. Then, for
every 1 ≤ i ≤ P ,

|λi−1 − λi| ≤ ∆(ϕi−1,Q, ϕi,Q)
2/µ.

In particular, summing up this inequality and comparing with Eq. (17) imply

|λ0 − λi| ≤
i∑

i′=1

|λi′−1 − λi′ | ≤ 100PF 2µ

for all 0 ≤ i ≤ P .

Proof. Consider all the maximal changed intervals [Lk, Rk) between ϕi−1,Q and ϕi,Q. By Lemma 5.14,
any [Lk, Rk) without the finger objects must contain the same number of size-c objects in ϕi−1,Q

and ϕi,Q. Since ϕi−1,Q and ϕi,Q have the same number of size-c objects, by subtracting, we conclude
that any [Lk, Rk) (even if containing the finger objects) has the same number of size-c objects in
both memory states.
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Let q1 < q2 < · · · < qQ and q′1 < q′2 < · · · < q′Q denote the locations of size-c objects in ϕi−1,Q

and ϕi,Q, respectively. By the previous paragraph, the two objects at qj in ϕi−1,Q and at q′j in ϕi,Q

either both belong to the same maximal changed interval, or are unchanged with qj = q′j .
We have

|λi−1 − λi| =

∣∣∣∣∣∣
Q∑

j=1

qj −
Q∑

j=1

q′j

∣∣∣∣∣∣ ≤
Q∑

j=1

|qj − q′j |.

For each non-zero term |qj − q′j |, if the two corresponding objects are in [Lk, Rk), we bound this
term by |qj−q′j | ≤ Rk−Lk. Let mk denote the number of size-c objects in [Lk, Rk) in ϕi−1,Q, which
must satisfy mk ≤ (Rk − Lk)/c ≤ (Rk − Lk)/µ. Then, we obtain the upper bound

Q∑
j=1

|qj − q′j | ≤
∑
k

mk(Rk − Lk) ≤
∑
k

(Rk − Lk)
2/µ.

Since the total length of maximal changed intervals equals the difference between two memory states
(Definition 5.5), we have∑

k

(Rk − Lk)
2 ≤

(∑
k

(Rk − Lk)
)2

= ∆(ϕi−1,Q, ϕi,Q)
2.

Chaining the three displayed inequalities finishes the proof.

The previous two lemmas together imply that the finger object should always be confined to a
small interval:

Lemma 5.22. For every 0 ≤ i ≤ P , |p0,Q − pi,Q| ≤ 4ρ.

Proof. By Lemma 5.20, all size-c objects in ϕi,Q are fully inside [pi,Q − ρ, pi,Q + ρ). Similarly, all
size-c objects in ϕ0,Q are fully inside [p0,Q − ρ, p0,Q + ρ).

Suppose to the contrary that |p0,Q − pi,Q| > 4ρ; here, assume p0,Q − pi,Q > 4ρ without loss of
generality (the other case follows similarly). Then, for any two size-c objects in ϕ0,Q and in ϕi,Q, at
locations q and q′ respectively, it holds that q − q′ ≥ (p0,Q − ρ)− (pi,Q + ρ) > 2ρ. Thus,

λ0 − λi > Q · 2ρ = 80
√
PQ2Fµ.

On the other hand, Lemma 5.21 states that

|λ0 − λi| ≤ 100PF 2µ.

Together, we get 20
√
PQ2Fµ < 100PF 2µ, which contradicts our assumption Eq. (19) that Q2 ≥

5
√
PF . Hence, we must have |p0,Q − pi,Q| ≤ 4ρ.

Using Lemma 5.22, the final plan is to show that it is expensive to insert all the P size-a objects,
as a large fraction of them will end up far from the finger object. To formalize this intuition, we
need to define a suitable potential for the size-a objects, and show that the total potential cannot
change significantly.
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Definition 5.23 (Φ(·)). Define interval [L∗, R∗) := [p0,Q − 8ρ, p0,Q + 8ρ). If a size-a object has
location q, we say its potential is

Φ(q) :=


q −R∗ if q > R∗,

L∗ − q if q ≤ L∗,

0 otherwise.

Note that Φ(q) ≥ 0, and
|Φ(q)− Φ(q′)| ≤ |q − q′|. (24)

Lemma 5.24. For 0 ≤ i ≤ P , let ηi denote the sum of potentials Φ(·) of all the size-a objects in
ϕi,Q. Then, |ηi−1 − ηi| ≤ 4∆(ϕi−1,Q, ϕi,Q)

2/µ.

Proof. Consider all the maximal changed intervals [Lk, Rk) between ϕi−1,Q and ϕi,Q. By Lemma 5.14,
any [Lk, Rk) without the finger objects must contain the same number of size-a objects in ϕi−1,Q

and ϕi,Q. Let [Lf , Rf ) be the maximal changed interval that contains the finger objects in ϕi−1,Q

and ϕi,Q, whose locations are pi−1,Q and pi,Q respectively. Since ϕi,Q has one more size-a object
than ϕi−1,Q, we know [Lf , Rf ) contains one more size-a object in ϕi,Q than in ϕi−1,Q.

Let q1 < q2 < · · · < qr and q′1 < q′2 < · · · < q′r denote the locations of size-a objects that are
outside [Lf , Rf ) in ϕi−1,Q and ϕi,Q, respectively. Let qr+1 < qr+2 < · · · < qi−1 and q′r+1 < q′r+2 <
· · · < q′i denote the locations of size-a objects inside [Lf , Rf ) in ϕi−1,Q and ϕi,Q, respectively. By
the previous paragraph, for j ∈ [r], the two objects at qj and at q′j either both belong to the same
maximal changed interval [Lk, Rk) (for some k ̸= f), or are unchanged with qj = q′j .

To bound |ηi−1 − ηi|, we write

|ηi−1 − ηi| =

∣∣∣∣∣∣
i−1∑
j=1

Φ(qj)−
i∑

j=1

Φ(q′j)

∣∣∣∣∣∣ ≤
r∑

j=1

|Φ(qj)− Φ(q′j)|+
i−1∑

j=r+1

Φ(qj) +
i∑

j=r+1

Φ(q′j),

≤
r∑

j=1

|qj − q′j |+
i−1∑

j=r+1

Φ(qj) +

i∑
j=r+1

Φ(q′j), (25)

where we used the non-negativity of Φ(·) and Eq. (24).
To bound the first sum in Eq. (25), we proceed in the same way as in the proof of Lemma 5.21.

For each non-zero term |qj − q′j |, if the two corresponding objects are in [Lk, Rk), we bound this
term by |qj − q′j | ≤ Rk − Lk. Let mk denote the number of size-a objects in [Lk, Rk) in ϕi−1,Q,
which must satisfy mk ≤ (Rk − Lk)/a ≤ (Rk − Lk)/µ. Then, we obtain the upper bound

r∑
j=1

|qj − q′j | ≤
∑
k ̸=f

mk(Rk − Lk) ≤
∑
k ̸=f

(Rk − Lk)
2/µ.

Now, we bound the last two sums in Eq. (25). We only need to consider the case where they
contain at least one positive term, i.e., there exists some q∗ ∈ {qr+1, . . . , qi−1} ∪ {q′r+1, . . . , q

′
i} such

that Φ(q∗) > 0. By definition of Φ(·), this means q∗ /∈ [L∗, R∗) = [p0,Q − 8ρ, p0,Q + 8ρ), so
|q∗ − p0,Q| ≥ 8ρ. Since both q∗ and pi,Q are in the interval [Lf , Rf ), we have

Rf − Lf ≥ |q∗ − pi,Q| ≥ |q∗ − p0,Q| − |pi,Q − p0,Q| ≥ 8ρ− 4ρ = 4ρ, (26)
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where in the last inequality we used Lemma 5.22. On the other hand, for any q ∈ {qr+1, . . . , qi−1}∪
{q′r+1, . . . , q

′
i} ⊂ [Lf , Rf ), we have

Φ(q) ≤ |q − p0,Q|+Φ(p0,Q) (by Eq. (24))
= |q − p0,Q| (by definition of Φ(·))
≤ |q − pi,Q|+ |pi,Q − p0,Q|
≤ (Rf − Lf ) + 4ρ (by q, pi,Q ∈ [Lf , Rf ), and Lemma 5.22)
≤ 2(Rf − Lf ). (by Eq. (26))

Since there are at most (Rf − Lf )/a size-a objects in [Lf , Rf ) in ϕi−1,Q (or, in ϕi,Q), we conclude
that the second sum and the third sum of Eq. (25) each can be upper-bounded by 2(Rf − Lf ) ·
(Rf − Lf )/a ≤ 2(Rf − Lf )

2/µ.
Summing up, Eq. (25) can be bounded as

|ηi−1 − ηi| ≤
∑
k ̸=f

(Rk − Lk)
2/µ+ 2(Rf − Lf )

2/µ+ 2(Rf − Lf )
2/µ

≤ 4
∑
k

(Rk − Lk)
2/µ

≤ 4
(∑

k

(Rk − Lk)
)2

/µ

= 4∆(ϕi−1,Q, ϕi,Q)
2/µ

as claimed.

Now we are ready to finish the proof.

Proof of Lemma 5.18. Recall ηi is the sum of potentials Φ(·) of all the size-a objects in ϕi,Q. We
have

ηP ≤ η0 +
P∑
i=1

|ηi−1 − ηi|

≤ η0 +

P∑
i=1

4∆(ϕi−1,Q, ϕi,Q)
2/µ (by Lemma 5.24)

≤ η0 + 400PF 2µ (by Eq. (17))

= 400PF 2µ. (ϕ0,Q contains no size-a objects)

By definition of Φ(·), if a size-a object is not fully contained in the interval [L∗−10ρ,R∗+10ρ+
a) = [p0,Q − 18ρ, p0,Q + 18ρ + a), then its potential is at least 10ρ. The number of size-a objects
in ϕP,Q that are fully contained in this interval is at most

(36ρ+ a)/a ≤ 36ρ/µ+ 1 <︸︷︷︸
by Eq. (23)

400
√
PQF ≤︸︷︷︸

by Eq. (20)

P/2.

Therefore, among the P size-a objects in ϕP,Q, at least P − P/2 = P/2 of them have potential
at least 10ρ, giving ηP ≥ (P/2) · (10ρ) = 50P 1.5QFµ. By comparing with the upper bound
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ηP ≤ 400PF 2µ from the previous paragraph, we get
√
PQ ≤ 8F . In particular, Q ≤ 8F , but this

contradicts Q = 4000F 2 by Eq. (21) and F ≥ 1. This finishes the proof of Lemma 5.18 (which
implies Theorem 5.2 and Theorem 1.4).

6 Conclusion and open questions

Our upper bound result demonstrates the surprising power of the sunflower lemma for the Memory
Reallocation problem. Our lower bound results rely on the additive structure of the object sizes in
the designed hard instances. In general, we believe that applying additive combinatorial techniques
to various resource allocation and scheduling problems is a fruitful direction for future research.

We conclude with several concrete open questions:

Closing the gap. One of the main open questions is to narrow the gap between our O(log4 ϵ−1 ·
(log log ϵ−1)2) upper bound and the Ω(log ϵ−1) lower bound for the expected reallocation overhead.
We conjecture that the lower bound is closer to the truth.

Time complexity. Kuszmaul [Kus23] provided a time-efficient implementation of his allocator
for tiny objects. It would be interesting to make our allocator time-efficient as well.

A main obstacle towards time-efficiency is the lack of a fast algorithmic version of Lemma 3.2,
which was proved via Erdős and Sárközy’s non-constructive argument based on the sunflower lemma.
As a preliminary attempt, one could compute the construction of Lemma 3.2 (with slightly worse
logarithmic factors) in poly(n,w) time, by combining Erdős–Rado’s proof of the sunflower lemma
with the standard dynamic programming algorithm for the counting version of the Subset Sum
problem. However, this is too slow for our application, where w is as large as ϵ−1.

After completing this paper, we became aware of a recent paper by Chen, Mao, and Zhang
[CMZ26], which, despite the different motivation, arrived at the same question and made significant
progress. More specifically, [CMZ26, Theorem 1.6] implies that, for any δ ∈ (0, 1), the construction
of our Lemma 3.2 can be implemented in Õ(n+wδ) time, at the cost of worsening all the logw factors
in the lemma statement to (logw)O(1/δ). This suggests the possibility of designing an allocator with
a time complexity overhead factor of exp(O(

√
log ϵ−1 log log ϵ−1)).

High-probability guarantee. Although polylogarithmic overhead with high probability is im-
possible in general (by Theorem 1.4), it is still achievable in some interesting special cases. For
example, one can show that Kuszmaul’s allocator [Kus23] for power-of-two sizes actually achieves
O(log(1/ϵ)) overhead with high probability in 1/ϵ. We conjecture that high-probability polyloga-
rithmic overhead is also achievable for tiny object sizes (for example, less than ϵ4M).

Another interesting direction is to design allocators achieving O(1/ϵα) overhead with high prob-
ability in 1/ϵ (or even deterministically) with small exponent α. Our lower bound (Theorem 1.4)
implies α ≥ 1/14, but the best known upper bound is only α = 1, achieved by the folklore deter-
ministic allocator.

Other settings. It would also be interesting to further investigate Memory Reallocation in the
cost-oblivious setting of [BFF+17], or the request fragmentation setting of [BCF+25].
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