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Abstract
We study the Pigeonhole Equal Subset Sum problem, which is a total-search variant of the Subset Sum
problem introduced by Papadimitriou (1994): we are given a set of n positive integers {w1, . . . , wn}
with the additional restriction that

∑n

i=1 wi < 2n − 1, and want to find two different subsets
A, B ⊆ [n] such that

∑
i∈A

wi =
∑

i∈B
wi.

Very recently, Jin and Wu (ICALP 2024) gave a randomized algorithm solving Pigeonhole Equal
Subset Sum in O∗(20.4n) time, beating the classical meet-in-the-middle algorithm with O∗(2n/2)
runtime. In this paper, we refine Jin and Wu’s techniques to improve the runtime even further to
O∗(2n/3).
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1 Introduction

Subset Sum is a fundamental NP-hard problem: given positive integers w1, w2, . . . , wn and
a target integer t, we want to find a subset A ⊆ [n] such that

∑
i∈A wi = t.1 Subset Sum

has a simple meet-in-the-middle algorithm in about O(2n/2) time, given by Horowitz and
Sahni in 1974 [13]. There has been a long line of research attempting to improve that
meet-in-the-middle running time for Subset Sum [4, 5, 22, 3, 14, 8, 9, 12], but it remains
open whether there exists an algorithm running in O(2(1/2−ε)n) time for any constant ε > 0.
The fastest known algorithm for Subset Sum only has a poly(n)-factor improvement over
O(2n/2) [12].

Despite the lack of progress on the time complexity of Subset Sum, there has been
significant progress for solving variants of the problem. Examples include Equal Subset
Sum [16], 2-Subset Sum and Shifted Sums [2], more general subset balancing problems [11],
algorithms solving either Equal Subset Sum or Subset Sum [20], Merlin–Arthur protocols
for Subset Sum [17, 1], Subset Sum in low space [7, 18], and quantum algorithms for Subset
Sum [2]. There is also a large body of works on pseudo-polynomial-time algorithms and
approximation schemes for Subset Sum and related problems (see e.g., [10] and the references
therein). In this work, we focus on exact exponential-time algorithms.

1 Throughout this paper, we write [n] = {1, . . . , n}.
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84:2 New Algorithms for Pigeonhole Equal Subset Sum

An important variant of Subset Sum is the Equal Subset Sum problem:

Equal Subset Sum [24]
Input: integers w1, w2, . . . , wn where |wi| ≤ 2poly(n)

Output: two different subsets A, B ⊆ [n] such that
∑

i∈A wi =
∑

i∈B wi (if exist).

Woeginger and Yu [24] first studied the Equal Subset Sum problem and showed that it is
NP-Complete, similarly to Subset Sum. Since we can assume the solution satisfies A ∩ B = ∅
(otherwise, we can return (A \ B, B \ A) instead), a standard meet-in-the-middle approach
can solve Equal Subset Sum in O∗(3n/2) ≤ O∗(1.7321n) time. Mucha, Nederlof, Pawlewicz,
and Węgrzycki [16] gave a faster O∗(1.7088n)-time algorithm in 2019, answering an open
question of [23].2

A special case of the Equal Subset Sum problem is the Pigeonhole Equal Subset Sum
problem (also sometimes called Pigeonhole Equal Sums). This problem is the focus of our
paper.

Pigeonhole Equal Subset Sum [19]
Input: positive integers w1, w2, . . . , wn, with promise

∑n
i=1 wi < 2n − 1.

Output: two different subsets A, B ⊆ [n] such that
∑

i∈A wi =
∑

i∈B wi.

Pigeonhole Equal Subset Sum is a total search problem, in that there always exists a
solution; our goal is merely to find one. To see why this is true, note that there are 2n subsets
S ⊆ [n], which can only attain 2n − 1 possible subset sums

∑
i∈S wi ∈ {0, 1, . . . , 2n − 2} due

to the promise
∑n

i=1 wi < 2n − 1, so by the pigeonhole principle there must exist a pair of
subsets with the same subset sum.

The Pigeonhole Equal Subset Sum problem was introduced by Papadimitriou in 1994
[19], and has been studied in the TFNP literature [6, 21]. It belongs to the total search
complexity class PPP, and is conjectured to be PPP-complete [19].

Pigeonhole Equal Subset Sum can be solved faster than the best known Equal Subset
Sum algorithm. Until very recently, the fastest known algorithm for Pigeonhole Equal Subset
Sum had time complexity O∗(2n/2), either by a simple binary search combined with the
classical meet-in-the-middle approach by Horowitz and Sahni [13] (see a short description in
[15, Section 2]), or by a mod-p dynamic programming algorithm by Allcock, Hamoudi, Joux,
Klingelhöfer, and Santha [2, Theorem 6.2]. Recently, a major advance by Jin and Wu [15]
gave a randomized algorithm for Pigeonhole Equal Subset Sum running in O∗(20.4n) time.
Roughly speaking, the key idea of Jin and Wu was to show that a Pigeonhole Equal Subset
Sum instance with very few solutions must satisfy a certain structural property: namely, the
input numbers should resemble the geometric progression 1, 2, 4, . . . , 2n−1 (see the formal
statement in Lemma 4).

1.1 Our contribution
In this paper, we improve the time complexity of Jin and Wu [15]’s Pigeonhole Equal Subset
Sum algorithm from O∗(20.4n) to the clean bound O∗(2n/3):

▶ Theorem 1 (Main). Pigeonhole Equal Subset Sum can be solved by a randomized algorithm
in O∗(2n/3) time.

2 Throughout this paper, we use O∗(·), Ω∗(·) to hide poly(n) factors, where n is the number of input
integers.
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Jin and Wu used similar techniques to give a polynomial-space algorithm for Pigeon-
hole Equal Subset Sum in O∗(20.75n) time, improving the straightforward O∗(2n)-time
polynomial-space algorithm based on binary search and meet-in-the-middle. We show that
their polynomial-space algorithm can also be further improved:

▶ Theorem 2. Pigeonhole Equal Subset Sum can be solved by a randomized algorithm in
O∗(22n/3) time and poly(n) space.

Our improved algorithms are based on the same structural property (see the formal
statement in Lemma 4) proved by Jin and Wu [15], but we exploit it in a more efficient way.
Jin and Wu [15] only exploited the property in the case when there are few solutions; if there
are many solutions, they simply switched to a subsampling approach to try to hit a solution
randomly, without using the structural property. In contrast, we make use of the structural
property even in the case where there are many solutions, thereby improving the overall time
complexity.

The rest of the paper is organized as follows: In Section 2, we give an overview of Jin
and Wu’s algorithm, describe their aforementioned structural property precisely, and extract
a few lemmas from their work which are useful to us. Then in Section 3, we present our
improved algorithm for Pigeonhole Equal Subset Sum, proving Theorem 1. In Section 4 we
prove Theorem 2. Finally, we discuss some future research directions in Section 5.

2 A Summary of Jin and Wu’s Algorithm

Throughout this paper, we use w1, . . . , wn to denote the input integers, and we use the
shorthand w(A) =

∑
i∈A wi for the subset sum attained by the subset of indices A ⊆ [n].

For an Equal Subset Sum instance (w1, . . . , wn) (not necessarily satisfying the pigeonhole
promise), Jin and Wu [15] considered the parameter F (w1, . . . , wn) defined as follows:

▶ Definition 3 (ft(·) and F (·)). For w1, . . . , wn ∈ Z and t ∈ Z, let

ft(w1, . . . , wn) := |{S ⊆ [n] : w(S) = t}|,

be the number of ways to achieve subset sum t. When w1, . . . , wn are clear from the context,
we abbreviate ft = ft(w1, . . . , wn).

Then, define

F (w1, . . . , wn) :=
∑
t∈Z

max{0, ft − 1}.

Observe that F (w1, . . . , wn) ∈ {0, 1, . . . , 2n − 1}.

Note that an Equal Subset Sum instance (w1, . . . , wn) has a solution A, B ⊆ [n], A ̸=
B, w(A) = w(B) if and only if F (w1, . . . , wn) ≥ 1.

Suppose the Pigeonhole Equal Subset Sum input instance consists of positive integers
w1 < w2 < · · · < wn (assuming no trivial solution wi = wj , i ̸= j exists) where w([n]) < 2n −1
(recall that this upper bound on the sum of all weights is the promise given by Pigeonhole
Equal Subset Sum). Jin and Wu’s key structural property relies on the following extra
condition [15, Equation (1)]:

w([i]) ≥ 2i − 1, for all i ∈ [n − 1]. (1)

That is, Equation (1) says that the total weight of the set {1, . . . , i} is at least 2i − 1. We
may assume without loss of generality that Equation (1) holds. To see why, note that if

ESA 2025
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w([i]) < 2i − 1 for some i ≤ n − 1, then {w1, . . . , wi} is also a Pigeonhole Equal Subset
Sum instance. We can solve this strictly smaller instance instead, and obtain a solution
A, B ⊆ [i] ⊊ [n], A ̸= B, w(A) = w(B). Hence, we may assume such i does not exist, so
Equation (1) holds.

Using Equation (1), Jin and Wu [15] proved a key structural lemma for Pigeonhole Equal
Subset Sum instances (w1, . . . , wn). Their lemma says that if F (w1, . . . , wn) is small, then
the sequence w1, . . . , wn is close to the geometric progression 1, 2, 4, . . . , 2n−1 with small
additive error.

▶ Lemma 4 ([15, Equation (8)]). Suppose positive integers w1 < w2 < · · · < wn satisfy
w([n]) < 2n − 1 and Equation (1). Then, for all i ∈ [n],

−i · F (w1, . . . , wn) ≤ wi − 2i−1 ≤ F (w1, . . . , wn). (2)

Lemma 4 will be used in our improved algorithm as well. For completeness, in Appendix A
we include a short proof of Lemma 4 given by Jin and Wu [15]. Jin and Wu gave two
different algorithms, which we summarize below in Lemma 5 and Lemma 6. The first
algorithm is suitable when the Pigeonhole Equal Subset Sum instance (w1, . . . , wn) has small
F (w1, . . . , wn). It was obtained by using Lemma 4 to speed up the standard binary search
and meet-in-the-middle approach:

▶ Lemma 5 ([15, Lemma 4]). Given parameter 1 ≤ ∆ ≤ 2n/(3n2), a Pigeonhole Equal
Subset Sum instance (w1, . . . , wn) (where wi < wi+1) satisfying F (w1, . . . , wn) ≤ ∆ and
Equation (1) can be solved deterministically in O∗(

√
∆) time.

The second algorithm of Jin and Wu works well when F (w1, . . . , wn) is large. The intuition
is that, in this case there are many solutions, so one can perform subsampling and still expect
at least one solution to survive. Jin and Wu used this subsampling idea to speed up the
mod-p dynamic programming algorithm (which had previously been used for Subset Sum
and related problems, e.g., [2, 4]):

▶ Lemma 6 ([15, Lemma 5]). Given parameter 2n/2 ≤ ∆ < 2n, an Equal Subset Sum instance
(w1, . . . , wn) with F (w1, . . . , wn) ≥ ∆ can be solved in O∗((22n/∆)1/3) time by a randomized
algorithm.

We remark that originally [15, Lemma 5] was stated for Pigeonhole Equal Subset Sum only.
However, upon inspecting their proof, one can easily verify that the pigeonhole promise was
never used, so that the algorithm actually works for Equal Subset Sum as well. This point
turns out to be useful for our improvement later.

Jin and Wu’s final algorithm for Pigeonhole Equal Subset Sum combines Lemma 5 and
Lemma 6, and the overall runtime is balanced at the bottleneck case ∆ ≈ 20.8n, leading to
an overall worst case runtime of O∗(20.4n).

In Jin and Wu’s algorithm, Lemma 4 was used in developing the algorithm of Lemma 5 (the
algorithm for the small F (w1, . . . , wn) case), but was ignored in the case where F (w1, . . . , wn)
is large. In our improved algorithm, we show how the structural property of Lemma 4 can
be exploited even when F (w1, . . . , wn) is large. This will allow us to reduce the original
Pigeonhole Equal Subset Sum instance to a small number of Equal Subset Sum instances,
which have sizes much smaller than n (and still have large F -values).
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3 Our Improvement for Pigeonhole Equal Subset Sum

In this section we prove our main Theorem 1. Let w1 < w2 < · · · < wn be the input
Pigeonhole Equal Subset Sum instance. Throughout, let k ∈ {0, 1, . . . , n − 1} be such that

2k ≤ F (w1, . . . , wn) < 2k+1. (3)

Our algorithm does not know the value of k in advance; instead, it tries all n possible values
of k in parallel, and terminates as soon as any one of them succeeds. This only increases the
runtime by an n factor. Hence, in the following we assume that the value of k is known.

We will separately consider the input items in [n] \ [k] = {k + 1, . . . , n} and in [k]. At a
high level, our algorithm performs the following two steps:
1. Guess a suitable pair of subsets X, Y ⊆ [n] \ [k].
2. Find subsets A0, B0 ⊆ [k] such that w(A0)−w(B0) = w(Y )−w(X), i.e., (A0 ⊔X, B0 ⊔Y )

is a solution for Pigeonhole Equal Subset Sum.
For the first step, we will use Lemma 4 and Equation (3) to show that there are only poly(n)
many pairs of X, Y ⊆ [n] \ [k] that we need to consider. For the second step, we will reduce
the task of finding A0, B0 to a smaller Equal Subset Sum instance with (k + 1) input integers
and large F -value, which can be solved by Lemma 6. (In comparison, Jin and Wu’s original
algorithm applied Lemma 6 to solve Equal Subset Sum on n integers.)

Now we define the close pairs, which are the pairs of subsets (X, Y ) that we need to
consider for the first step:

▶ Definition 7 (Close pairs). Define the set of close pairs as

C := {(X, Y ) : X, Y ⊆ [n] \ [k] and |w(X) − w(Y )| ≤ (k + 1)2k+1}.

Define the set of disjoint close pairs as

D := {(X, Y ) ∈ C : X ∩ Y = ∅}.

By the identity w(X) − w(Y ) = w(X \ Y ) − w(Y \ X), we have

D = {(X \ Y, Y \ X) : (X, Y ) ∈ C}. (4)

The following simple lemma explains why it is sufficient to only consider close pairs:

▶ Lemma 8. If A, B ⊆ [n] and w(A) = w(B), then (A \ [k], B \ [k]) ∈ C.

Proof. Since w(A \ [k]) + w(A ∩ [k]) = w(A) = w(B) = w(B \ [k]) + w(B ∩ [k]), we have

|w(A \ [k]) − w(B \ [k])| = |w(B ∩ [k]) − w(A ∩ [k])| ≤ w([k]).

By the upper bounds in Lemma 4 and Equation (3), we have

w([k]) ≤
k∑

i=1
(2i−1 + F (w1, . . . , wn)) < (k + 1)2k+1.

The claim then follows from the definition of C. ◀

Now we bound the number of close pairs and disjoint close pairs:

▶ Lemma 9. We have |D| ≤ 200n5 and |C| ≤ 200n52n−k. Moreover, D can be computed in
poly(n) time.

ESA 2025



84:6 New Algorithms for Pigeonhole Equal Subset Sum

Proof. First, we prove the claimed upper bound on |D|. For X ⊆ [n] \ [k], denote w̃(X) :=∑
i∈X 2i−1. By Lemma 4 and Equation (3), for all i ∈ [n],

|wi − 2i−1| ≤ i · F (w1, . . . , wn) ≤ n · 2k+1.

Hence, |w̃(X) − w(X)| ≤ n2 · 2k+1 for all X ⊆ [n] \ [k]. Therefore, for all (X, Y ) ∈ D, we
have |w̃(X) − w̃(Y )| ≤ |w(X) − w(Y )| + 2n2 · 2k+1 ≤ (k + 1)2k+1 + 2n2 · 2k+1 ≤ 6n22k. Now
it remains to characterize all members of D′ defined as

D′ := {(X, Y ) ∈ 2[n]\[k] × 2[n]\[k] : X ∩ Y = ∅ and |w̃(X) − w̃(Y )| ≤ 6n22k} ⊇ D.

Note that (∅, ∅) ∈ D′. Now consider any (X, Y ) ∈ D′ not equal to (∅, ∅), and let i be the
maximum element in X ∪ Y . By symmetry, we assume i ∈ X without loss of generality, and
thus Y ⊆ [i − 1] \ [k]. Then,

w̃(X) − w̃(Y ) =
(

2i−1 +
∑

j∈X\{i}

2j−1
)

−
( i−1∑

j=k+1
2j−1 −

∑
j∈{k+1,...,i−1}\Y

2j−1
)

= 2k +
∑

j∈X\{i}

2j−1 +
∑

j∈{k+1,...,i−1}\Y

2j−1 ≥ 0.

On the other hand, w̃(X)− w̃(Y ) ≤ 6n22k by definition of D′. Hence, for every j ∈ [i−1]\ [k]
with 2j−1 ≥ 6n22k, we must have j ∈ Y and j /∈ X (otherwise, 2j−1 would appear as a
summand above, violating w̃(X) − w̃(Y ) ≤ 6n22k). Then, to fully determine (X, Y ), it only
remains to decide for each integer k + 1 ≤ j < log2(6n22k) + 1 whether j belongs to X, Y ,
or neither. There are at most 3log2(6n22k)+1−k = 3log2(6n2)+1 < 60n4 possible choices in total.
Since there are up to n choices of i and two choices for whether i belongs to X or Y , we
conclude that |D′| ≤ 1 + 2 · n · 60n4 < 200n5.

The above argument can be easily converted into an algorithm that computes the set D′

in poly(n) time. Since D′ ⊇ D, we have |D| ≤ 200n5 as claimed, and we can also compute D
in poly(n) time by checking every pair in D′ for containment in C.

Now we bound |C|. Recall from Equation (4) that every (X, Y ) ∈ C ⊆ 2[n]\[k] × 2[n]\[k]

can be mapped to (X \ Y, Y \ X) ∈ D, and note that every (X ′, Y ′) ∈ D can only have at
most 2n−k pre-images in C under this mapping. Hence, |C| ≤ 2n−k|D| ≤ 200n52n−k. ◀

The following lemma allows us to reduce the original problem to Equal Subset Sum
instances on k or k + 1 integers with large F -value:

▶ Lemma 10. For sets X, Y ⊆ [n] \ [k], define the k- or (k + 1)-tuple WX,Y as

WX,Y :=
{

(w1, . . . , wk) if X = Y,

(w1, . . . , wk, w(X) − w(Y )) if X ̸= Y.
(5)

Then, there must exist (X, Y ) ∈ D, such that F (WX,Y ) ≥ F (w1, . . . , wn)/|C|.3

Before proving Lemma 10, we first use it to finish the proof of our main theorem:

3 Note that in our definition of WX,Y for (X, Y ) ∈ D, the first case X = Y happens only if X = Y = ∅.
However we later will consider WX,Y where (X, Y ) may not belong to D.



C. Jin, R. Williams, and S. Zhang 84:7

Proof of Theorem 1 (assuming Lemma 10). As mentioned in the beginning of this section,
we can assume the integer k defined by Equation (3) is known. We assume k satisfies

2k ≥ 200n5 · 22n/3, (6)

since otherwise we can already use Lemma 5 to solve the Pigeonhole Equal Subset Sum
instance (w1, . . . , wn) in O∗(

√
2k+1) = O∗(2n/3) time as required.

Compute D with |D| ≤ poly(n) by Lemma 9 in poly(n) time. Enumerate each (X, Y ) ∈ D,
and then solve the Equal Subset Sum instance WX,Y (defined in Equation (5)) using Lemma 6.
If the algorithm in Lemma 6 successfully finds a solution (U, V ), U ̸= V in the instance WX,Y

(where we can assume U ∩ V = ∅ without loss of generality), then we distinguish between
two cases:

Case where U, V ⊆ [k]:
Then, since w(U) = w(V ) and U ̸= V , we can return (U, V ) as a solution for the original
Pigeonhole Equal Subset Sum instance w1, . . . , wn.
Case where k + 1 ∈ U ∪ V :
This can only happen in the X ̸= Y case, where WX,Y contains the extra (k + 1)-
th element w(X) − w(Y ). Without loss of generality assume k + 1 ∈ U, k + 1 /∈ V .
Then, define A = (U \ {k + 1}) ⊔ X and B = V ⊔ Y , both of which are subsets of [n].
Note that A ̸= B due to X ̸= Y . Then we have w(A) = w(U \ {k + 1}) + w(X) =(
w(V ) − (w(X) − w(Y ))

)
+ w(X) = w(V ) + w(Y ) = w(B). So we can return (A, B) as a

solution for the original Pigeonhole Equal Subset Sum instance w1, . . . , wn.

Now we analyze the runtime. By Lemma 10, for at least one (X, Y ) ∈ D, F (WX,Y ) ≥
F (w1, . . . , wn)/|C| ≥ (200n5)−1 · 22k−n =: ∆ (where we used Lemma 9 and Equation (3)).
Then, applying Lemma 6 to solve WX,Y takes time O∗((22(k+1)/∆)1/3) = O∗(

2n/3)
. Note

that the precondition ∆ ≥ 2(k+1)/2 required by Lemma 6 is satisfied due to Equation (6). We
can try all |D| ≤ poly(n) possibilities for the pair (X, Y ) in parallel and run the algorithm of
Lemma 6 until the earliest of them succeeds. The total time complexity is still O∗(2n/3). ◀

It remains to prove Lemma 10.

Proof of Lemma 10. We will show that there exists a pair (X, Y ) ∈ C satisfying the desired
bound F (WX,Y ) ≥ F (w1, . . . , wn)/|C|. Once this is shown, by w(X) − w(Y ) = w(X \ Y ) −
w(Y \ X) we have WX\Y, Y \X = WX,Y , so the pair (X \ Y, Y \ X) ∈ D also satisfies the
desired bound, which would finish the proof.

We start by rewriting F (WX,Y ) as follows:

▷ Claim 11. For sets X, Y ⊆ [n] \ [k] and integer t, define

h(X, t) :=
∣∣{S ⊆ [n] : S \ [k] = X and w(S) = t

}∣∣,
which is the number of ways to extend X into [n] to achieve a sum of t, and define

g(X, Y, t) :=
{

max{h(X, t) + h(Y, t) − 1, 0} if X ̸= Y,

max{h(X, t) − 1, 0} if X = Y.

Then, F (WX,Y ) =
∑

t∈Z g(X, Y, t).

ESA 2025



84:8 New Algorithms for Pigeonhole Equal Subset Sum

Proof of Claim 11. By definition of h(X, t), observe that h(X, t) = ft−w(X)(w1, . . . , wk)
(where ft(·) was defined in Definition 3). Hence,

F (WX,X) =
∑
t′∈Z

max{ft′(w1, . . . , wk) − 1, 0}

=
∑
t∈Z

max{ft−w(X)(w1, . . . , wk) − 1, 0}

=
∑
t∈Z

max{h(X, t) − 1, 0}.

This finishes the proof for the X = Y case. Now observe that

h(X, t) + h(Y, t) = ft−w(X)(w1, . . . , wk) + ft−w(Y )(w1, . . . , wk)
= ft−w(Y )(w1, . . . , wk, w(X) − w(Y )),

where the last equality can be seen from separately considering subsets of {w1, . . . , wk, w(X)−
w(Y )} which include w(X) − w(Y ) and those which do not. Therefore, if X ≠ Y , then we
similarly have

F (WX,Y ) =
∑
t′∈Z

max{ft′(w1, . . . , wk, w(X) − w(Y )) − 1, 0}

=
∑
t∈Z

max{h(X, t) + h(Y, t) − 1, 0}

as desired. ◀

Now we relate F (w1, . . . , wn) =
∑

t∈Z max{ft(w1, . . . , wn) − 1, 0} to the expressions from
Claim 11. For any t with ft(w1, . . . , wn) ≥ 1, fix an arbitrary At ⊆ [n] with w(At) = t, and
let Xt := At \ [k]. Note that h(Xt, t) ≥ 1. Then, by Lemma 8, every Y ⊆ [n] \ [k] with
h(Y, t) ≥ 1 must satisfy (Xt, Y ) ∈ C. Hence,

ft(w1, . . . , wn) − 1 = −1 +
∑

Y ⊆[n]\[k]:h(Y,t)≥1

h(Y, t) (by definition of ft(·) and h(·))

≤ −1 +
∑

Y :(Xt,Y )∈C

h(Y, t)

= (h(Xt, t) − 1) +
∑

Y :(Xt,Y )∈C,Y ̸=Xt

h(Y, t)

≤ (h(Xt, t) − 1) +
∑

Y :(Xt,Y )∈C,Y ̸=Xt

(h(Xt, t) + h(Y, t) − 1)

≤
∑

Y :(Xt,Y )∈C

g(Xt, Y, t)

≤
∑

(X,Y )∈C

g(X, Y, t).

This means that for all t ∈ Z,

max{ft(w1, . . . , wn) − 1, 0} ≤
∑

(X,Y )∈C

g(X, Y, t).

By summing over all t ∈ Z and substituting using Claim 11, we get

F (w1, . . . , wn) ≤
∑

(X,Y )∈C

F (WX,Y ).



C. Jin, R. Williams, and S. Zhang 84:9

Then, by averaging, there exists (X, Y ) ∈ C such that F (WX,Y ) ≥ F (w1, . . . , wn)/|C| as
claimed. ◀

4 A Polynomial-Space Algorithm

In this section we prove Theorem 2. We use the following two lemmas from Jin and Wu [15],
which can be viewed as polynomial-space versions of Lemma 5 and Lemma 6 respectively:

▶ Lemma 12 ([15, Lemma 11]). Given parameter 1 ≤ ∆ ≤ 2n/(3n2), a Pigeonhole Equal
Subset Sum instance (w1, . . . , wn) (where wi < wi+1) satisfying F (w1, . . . , wn) ≤ ∆ and
Equation (1) can be solved deterministically in poly(n) space and O∗(∆) time.

▶ Lemma 13 ([15, Lemma 13]). Given parameter 1 ≤ ∆ ≤ 2n, an Equal Subset Sum instance
(w1, . . . , wn) with F (w1, . . . , wn) ≥ ∆ can be solved in O∗(21.5n/∆) time and poly(n) space
by a randomized algorithm.

Again, although [15, Lemma 13] was originally stated for the Pigeonhole Equal Subset Sum
problem, it actually works for Equal Subset Sum as well because the proof does not use the
pigeonhole promise.

Proof sketch of Theorem 2. We follow the same proof outline of Theorem 1, except that we
replace the exponential-space subroutines, Lemma 5 and Lemma 6, by their polynomial-space
counterparts, Lemma 12 and Lemma 13, respectively. The resulting algorithm is correct and
runs in polynomial space. It only remains to re-analyze the time complexity.

Recall that we can assume the integer k ∈ {0, 1, . . . , n−1} satisfying 2k ≤ F (w1, . . . , wn) <

2k+1 (Equation (3)) is known. Let M ∈ [1, 2n/(3n2)] be determined later. If 2k ≤ M , we
choose to use Lemma 12 and solve the given Pigeonhole Equal Subset Sum instance in
O∗(2k+1) = O∗(M) time. If 2k > M , we follow the main proof of Theorem 1 to reduce
the original problem to poly(n) many Equal Subset Sum instances of size k + 1 (or k) in
which at least one instance has F -value Ω∗(22k−n), so the total time complexity of applying
Lemma 13 becomes O∗(21.5k/22k−n) = O∗(2n−0.5k) ≤ O∗(2n/

√
M). By choosing M = 22n/3,

the overall time complexity becomes O∗(M + 2n/
√

M) = O∗(22n/3). ◀

5 Open Questions

We list a few open questions related to this work.
Can we improve the O∗(2n/3) time complexity for Pigeonhole Equal Subset Sum? Can
we improve the O∗(1.7088n) time complexity for Equal Subset Sum [16]?
Can we obtain fast deterministic algorithms for Pigeonhole Equal Subset Sum? Our
algorithm (and Jin and Wu’s algorithm [15]) uses Lemma 6 which is based on random
subsampling. To the best of our knowledge, the O∗(2n/2)-time algorithms via meet-in-
the-middle ([2] or [15, Section 2]) remain the fastest known deterministic algorithms.
The authors of [2] proposed a more difficult Modular version of Pigeonhole Equal Subset
Sum problem, and obtained a O∗(2n/2)-time algorithm. In this problem, we are given
integers w1, . . . , wn and a modulus m ≤ 2n − 1, and need to find two distinct subsets
A, B ⊆ [n] such that

∑
i∈A wi ≡

∑
i∈B wi (mod m). Can we improve the O∗(2n/2) time

complexity for Modular Pigeonhole Equal Subset Sum?
The k-SUM problem can be viewed as the fine-grained or parameterized version of the
Subset Sum problem. Analogously, we propose the following Pigeonhole Equal k-SUM
problem (for fixed integers k ≥ 2):

ESA 2025
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Pigeonhole Equal k-SUM [19]
Input: k length-n arrays A1, . . . , Ak of integers from the range [0, nk−1

k ).
Output: two different k-tuples (i1, . . . , ik), (j1, . . . , jk) ∈ [n]k such that A1[i1] + · · · +
Ak[ik] = A1[j1] + · · · + Ak[jk].

This is a total search problem, and the brute force algorithm runs in O(nk) time. It is
easy to improve it to Õ(n⌈k/2⌉) time, using the standard binary search with meet-in-the-
middle (following the same idea as the warm-up Pigeonhole Equal Subset Sum algorithm
described in [15, Section 2], except that we replace the O∗(2n/2)-time subroutine for
counting Subset Sum solutions by the analogous Õ(n⌈k/2⌉)-time algorithm for k-SUM).
Can we improve the runtime to faster than Õ(n⌈k/2⌉), say for the k = 3 case?

References
1 Shyan Akmal, Lijie Chen, Ce Jin, Malvika Raj, and R. Ryan Williams. Improved merlin-arthur

protocols for central problems in fine-grained complexity. Algorithmica, 85(8):2395–2426, 2023.
doi:10.1007/S00453-023-01102-6.

2 Jonathan Allcock, Yassine Hamoudi, Antoine Joux, Felix Klingelhöfer, and Miklos Santha.
Classical and quantum algorithms for variants of subset-sum via dynamic programming. In 30th
Annual European Symposium on Algorithms, ESA 2022, September 5-9, 2022, Berlin/Potsdam,
Germany, volume 244 of LIPIcs, pages 6:1–6:18. Schloss Dagstuhl - Leibniz-Zentrum für Inform-
atik, 2022. URL: https://arxiv.org/abs/2111.07059, doi:10.4230/LIPIcs.ESA.2022.6.

3 Per Austrin, Petteri Kaski, Mikko Koivisto, and Jesper Nederlof. Subset sum in the absence of
concentration. In 32nd International Symposium on Theoretical Aspects of Computer Science,
STACS 2015, March 4-7, 2015, Garching, Germany, volume 30 of LIPIcs, pages 48–61. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2015. doi:10.4230/LIPIcs.STACS.2015.48.

4 Per Austrin, Petteri Kaski, Mikko Koivisto, and Jesper Nederlof. Dense subset sum may
be the hardest. In Proceedings of the 33rd Symposium on Theoretical Aspects of Computer
Science (STACS), volume 47 of LIPIcs, pages 13:1–13:14. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2016. doi:10.4230/LIPIcs.STACS.2016.13.

5 Per Austrin, Petteri Kaski, Mikko Koivisto, and Jesper Nederlof. Sharper upper bounds for
unbalanced uniquely decodable code pairs. IEEE Trans. Inf. Theory, 64(2):1368–1373, 2018.
doi:10.1109/TIT.2017.2688378.

6 Frank Ban, Kamal Jain, Christos H. Papadimitriou, Christos-Alexandros Psomas, and Aviad
Rubinstein. Reductions in PPP. Inf. Process. Lett., 145:48–52, 2019. doi:10.1016/j.ipl.
2018.12.009.

7 Nikhil Bansal, Shashwat Garg, Jesper Nederlof, and Nikhil Vyas. Faster space-efficient
algorithms for subset sum, k-sum, and related problems. SIAM J. Comput., 47(5):1755–1777,
2018. doi:10.1137/17M1158203.

8 Anja Becker, Jean-Sébastien Coron, and Antoine Joux. Improved generic algorithms for hard
knapsacks. In Advances in Cryptology - EUROCRYPT 2011 - 30th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Tallinn, Estonia,
May 15-19, 2011. Proceedings, volume 6632 of Lecture Notes in Computer Science, pages
364–385. Springer, 2011. doi:10.1007/978-3-642-20465-4\_21.

9 Xavier Bonnetain, Rémi Bricout, André Schrottenloher, and Yixin Shen. Improved classical
and quantum algorithms for subset-sum. In Advances in Cryptology - ASIACRYPT 2020 - 26th
International Conference on the Theory and Application of Cryptology and Information Security,
Daejeon, South Korea, December 7-11, 2020, Proceedings, Part II, volume 12492 of Lecture
Notes in Computer Science, pages 633–666. Springer, 2020. doi:10.1007/978-3-030-64834-3\
_22.

10 Lin Chen, Jiayi Lian, Yuchen Mao, and Guochuan Zhang. An improved pseudopolynomial
time algorithm for subset sum. In 65th IEEE Annual Symposium on Foundations of Computer

https://doi.org/10.1007/S00453-023-01102-6
https://arxiv.org/abs/2111.07059
https://doi.org/10.4230/LIPIcs.ESA.2022.6
https://doi.org/10.4230/LIPIcs.STACS.2015.48
https://doi.org/10.4230/LIPIcs.STACS.2016.13
https://doi.org/10.1109/TIT.2017.2688378
https://doi.org/10.1016/j.ipl.2018.12.009
https://doi.org/10.1016/j.ipl.2018.12.009
https://doi.org/10.1137/17M1158203
https://doi.org/10.1007/978-3-642-20465-4_21
https://doi.org/10.1007/978-3-030-64834-3_22
https://doi.org/10.1007/978-3-030-64834-3_22


C. Jin, R. Williams, and S. Zhang 84:11

Science, FOCS 2024, Chicago, IL, USA, October 27-30, 2024, pages 2202–2216. IEEE, 2024.
doi:10.1109/FOCS61266.2024.00129.

11 Xi Chen, Yaonan Jin, Tim Randolph, and Rocco A. Servedio. Average-case subset balancing
problems. In Proceedings of the 2022 ACM-SIAM Symposium on Discrete Algorithms, SODA
2022, Virtual Conference / Alexandria, VA, USA, January 9 - 12, 2022, pages 743–778. SIAM,
2022. doi:10.1137/1.9781611977073.33.

12 Xi Chen, Yaonan Jin, Tim Randolph, and Rocco A. Servedio. Subset sum in time 2n/2 /
poly(n). In Approximation, Randomization, and Combinatorial Optimization. Algorithms
and Techniques, APPROX/RANDOM 2023, September 11-13, 2023, Atlanta, Georgia, USA,
volume 275 of LIPIcs, pages 39:1–39:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2023. doi:10.4230/LIPIcs.APPROX/RANDOM.2023.39.

13 Ellis Horowitz and Sartaj Sahni. Computing partitions with applications to the knapsack
problem. Journal of the ACM, 21(2):277–292, 1974. doi:10.1145/321812.321823.

14 Nick Howgrave-Graham and Antoine Joux. New generic algorithms for hard knapsacks. In
Advances in Cryptology - EUROCRYPT 2010, 29th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Monaco / French Riviera, May 30 -
June 3, 2010. Proceedings, volume 6110 of Lecture Notes in Computer Science, pages 235–256.
Springer, 2010. doi:10.1007/978-3-642-13190-5\_12.

15 Ce Jin and Hongxun Wu. A faster algorithm for pigeonhole equal sums. In 51st International
Colloquium on Automata, Languages, and Programming, ICALP 2024, July 8-12, 2024, Tallinn,
Estonia, volume 297 of LIPIcs, pages 94:1–94:11. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2024. doi:10.4230/LIPICS.ICALP.2024.94.

16 Marcin Mucha, Jesper Nederlof, Jakub Pawlewicz, and Karol Węgrzycki. Equal-subset-sum
faster than the meet-in-the-middle. In 27th Annual European Symposium on Algorithms,
ESA 2019, September 9-11, 2019, Munich/Garching, Germany, volume 144 of LIPIcs, pages
73:1–73:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.
ESA.2019.73.

17 Jesper Nederlof. A short note on merlin-arthur protocols for subset sum. Inf. Process. Lett.,
118:15–16, 2017. doi:10.1016/j.ipl.2016.09.002.

18 Jesper Nederlof and Karol Węgrzycki. Improving Schroeppel and Shamir’s algorithm for
subset sum via orthogonal vectors. In STOC ’21: 53rd Annual ACM SIGACT Symposium on
Theory of Computing, Virtual Event, Italy, June 21-25, 2021, pages 1670–1683. ACM, 2021.
doi:10.1145/3406325.3451024.

19 Christos H. Papadimitriou. On the complexity of the parity argument and other inefficient
proofs of existence. J. Comput. Syst. Sci., 48(3):498–532, 1994. doi:10.1016/S0022-0000(05)
80063-7.

20 Tim Randolph. Exact and Parameterized Algorithms for Subset Sum Problems. PhD thesis,
Columbia University, 2024. doi:10.7916/baym-5m55.

21 Katerina Sotiraki, Manolis Zampetakis, and Giorgos Zirdelis. PPP-completeness with connec-
tions to cryptography. In 59th IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2018, Paris, France, October 7-9, 2018, pages 148–158. IEEE Computer Society, 2018.
doi:10.1109/FOCS.2018.00023.

22 Henk C. A. van Tilborg. An upper bound for codes in a two-access binary erasure channel
(corresp.). IEEE Trans. Inf. Theory, 24(1):112–116, 1978. doi:10.1109/TIT.1978.1055814.

23 Gerhard J. Woeginger. Open problems around exact algorithms. Discret. Appl. Math.,
156(3):397–405, 2008. doi:10.1016/J.DAM.2007.03.023.

24 Gerhard J. Woeginger and Zhongliang Yu. On the equal-subset-sum problem. Inf. Process.
Lett., 42(6):299–302, 1992. doi:10.1016/0020-0190(92)90226-L.

25 Stan Zhang. Pigeonhole Equal Subset Sum in O∗(2n/3). Master’s thesis, Massachusetts
Institute of Technology, 2024. URL: https://hdl.handle.net/1721.1/156830.

ESA 2025

https://doi.org/10.1109/FOCS61266.2024.00129
https://doi.org/10.1137/1.9781611977073.33
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2023.39
https://doi.org/10.1145/321812.321823
https://doi.org/10.1007/978-3-642-13190-5_12
https://doi.org/10.4230/LIPICS.ICALP.2024.94
https://doi.org/10.4230/LIPIcs.ESA.2019.73
https://doi.org/10.4230/LIPIcs.ESA.2019.73
https://doi.org/10.1016/j.ipl.2016.09.002
https://doi.org/10.1145/3406325.3451024
https://doi.org/10.1016/S0022-0000(05)80063-7
https://doi.org/10.1016/S0022-0000(05)80063-7
https://doi.org/10.7916/baym-5m55
https://doi.org/10.1109/FOCS.2018.00023
https://doi.org/10.1109/TIT.1978.1055814
https://doi.org/10.1016/J.DAM.2007.03.023
https://doi.org/10.1016/0020-0190(92)90226-L
https://hdl.handle.net/1721.1/156830


84:12 New Algorithms for Pigeonhole Equal Subset Sum

A Proof of Lemma 4 by Jin and Wu

▶ Lemma 4 ([15, Equation (8)]). Suppose positive integers w1 < w2 < · · · < wn satisfy
w([n]) < 2n − 1 and Equation (1). Then, for all i ∈ [n],

−i · F (w1, . . . , wn) ≤ wi − 2i−1 ≤ F (w1, . . . , wn). (2)

The following proof of Lemma 4 was given by [15].

Proof. (Jin and Wu [15]) Recall our notations w(A) =
∑

i∈A wi, ft = |{A ⊆ [n] : w(A) = t}|.
We abbreviate F = F (w1, . . . , wn) =

∑
t∈Z max{ft − 1, 0}. Recall our assumption from

Equation (1):

w([i]) ≥ 2i − 1 for all i ∈ [n − 1]. (1)

Since w([n]) < 2n − 1, we know ft = 0 for all t /∈ [0, 2n − 1], and
∑

0≤t<2n ft = 2n. Then,

F =
∑

0≤t<2n

max{ft − 1, 0} =
∑

0≤t<2n

(ft − 1[ft ≥ 1]) = 2n −
∑

0≤t<2n

1[ft ≥ 1],

and thus

F = |{0 ≤ t < 2n : ft = 0}|. (7)

Since ft = 0 for all w([n]) < t < 2n, from Equation (7) we know F ≥ 2n − 1 − w([n]),
and hence w([n]) ≥ 2n − 1 − F . Combined with Equation (1) for i ∈ [n − 1], we get

w([i]) ≥ 2i − 1 − F for all i ∈ [n]. (8)

Now we have the following claim:

▷ Claim 14. For all i ∈ [n],

wi ≤ 2i−1 + F. (9)

Summing Equation (9) over i gives

w([i]) ≤ 2i − 1 + iF (10)

for all i ∈ [n].

Proof of Claim 14. Fix i ∈ [n]. Let M be the number of subsets S ⊆ [n] with w(S) < wi.
Since wi < wi+1 < · · · < wn, any such S must be contained in [i − 1], and thus M ≤ 2i−1.
On the other hand, M =

∑wi−1
t=0 ft ≥ wi − |{0 ≤ t < wi : ft = 0}| ≥ wi − F by Equation (7).

Hence, wi ≤ M + F ≤ 2i−1 + F . ◀

Comparing Equation (8) with Equation (10) gives

wi = w([i]) − w([i − 1]) ≥ (2i − 1 − F ) − (2i−1 − 1 + (i − 1)F ) = 2i−1 − iF.

Together with Equation (9) we get the claimed bound

wi − 2i−1 ∈ [−iF, F ]

for all i ∈ [n]. ◀
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