Tight Dynamic Problem Lower Bounds
from Generalized BMM and OMv

Ce lJin Yinzhan Xu
MIT

STOC 2022

Dynamic problems

* Maintain some data D (graphs, sequences, ...)
e Support small updates to D (insertions, deletions, ...)
 Answer queries about D (connectivity?...)

* Best possible update time and query time?

Dynamic problems

* Maintain some data D (graphs, sequences, ...)
e Support small updates to D (insertions, deletions, ...)
 Answer queries about D (connectivity?...)

* Best possible update time and query time?
 Unconditional Lower Bounds are stuck at polylog(n) ®

Dynamic problems

* Maintain some data D (graphs, sequences, ...)
e Support small updates to D (insertions, deletions, ...)
 Answer queries about D (connectivity?...)

* Best possible update time and query time?
 Unconditional Lower Bounds are stuck at polylog(n) ®

* Higher LBs from Fine-Grained Conjectures!

* A long line of work
e [Patrascu STOC’10]
* [Abboud and Vassilevska Williams FOCS’14]
* [Henzinger, Krinninger, Nanongkai, and Saranurak STOC’15]

Dynamic problems

* Maintain some data D (graphs, sequences, ...)
e Support small updates to D (insertions, deletions, ...)
 Answer queries about D (connectivity?...)

* Best possible update time and query time?
yolylog(n) ®

€)(n2) per update!
s,t-Shortest Path
N
Weighted Matchin
J J % — € Approx. Diameter !
1/3
3SUM i
Reachability mn

m / Strongly Connected \ m
oy

SP
LY
Components
m Maximum Matching
\\Y

B

Different conjectures are better for explaining different barriers Rt IRl Ra 0 =R le10=)]

Dynamic problems

* Maintain some data D (graphs, sequences, ...)
e Support small updates to D (insertions, deletions, ...)
 Answer queries about D (connectivity?...)

* Best possible update time and query time?

This work:

Q(nz) PED Update! s,t-Shortest Path

D

Weighted Matching 7 , | .

L CIP? © A collection of new

m1/3

3SUM /\ Lower Bounds
Reachability mn

based on
generalized versions
of BMM and OMv

m Maximum Matching

SP
MM
\Y\Y;

e i DR

B

Different conjectures are better for explaining different barriers Rt IRl Ra 0 =R le10=)]

Combinatorial BMM hypothesis

* Input: n X n Boolean matrices = A B

* Output: Boolean matrix product = AR

Combinatorial BMM hypothesis

* Input: n X n Boolean matrices = A B

* Output: Boolean matrix product = AR

e Conjecture: No O(n3~¢)-time “combinatorial” algorithm exists

Combinatorial BMM hypothesis

* Input: n X n Boolean matrices = A B

* Output: Boolean matrix product = AR

e Conjecture: No O(n3~¢)-time “combinatorial” algorithm exists
« Current best: n3(loglogn)°® /(logn)* [Yu'15]

Algorithms avoiding Fast Matrix
Multiplication (e.g. Strassen’s)

O MV hypOth eSiS [Henzinger-Krinninger-Nanongkai-Saranurak STOC’15]

* Input: Boolean | M
U1V Vn
* Output: (in an online fashion)

MvMv, Muv,

O MV hypOth eSiS [Henzinger-Krinninger-Nanongkai-Saranurak STOC’15]

* Input: Boolean | M
U1V Vn
* Output: (in an online fashion)

MviMv, Muv, Not only “combinatorial”

e Conjecture: No O(n3¢)-time algorithm exists

O MV hypOth eSiS [Henzinger-Krinninger-Nanongkai-Saranurak STOC’15]

* Input: Boolean | M
U1V Vn
* Output: (in an online fashion)

MviMv, Muv, Not only “combinatorial”

e Conjecture: No O(n3¢)-time algorithm exists
* Current best: n3/29(\/ logn) time [Larsen-Williams’17]

Dynamic Range-Mode Query

* Maintain an integer array A[1], A[2], ..., A[n]
* Support Insertions and Deletions

e Query [, r: what is the most frequent element in A[l], A[l + 1], ..., A[r]?
(breaking ties arbitrarily)

Dynamic Range-Mode Query

* Maintain an integer array A[1], A[2], ..., A[n]
* Support Insertions and Deletions

e Query [, r: what is the most frequent element in A[l], A[l + 1], ..., A[r]?
(breaking ties arbitrarily)

* Combinatorial algorithms (folklore):
* Dynamic range-mode: 0(n?/3) query time & update time

Dynamic Range-Mode Query

* Maintain an integer array A[1], A[2], ..., A[n]
* Support Insertions and Deletions

e Query [, r: what is the most frequent element in A[l], A[l + 1], ..., A[r]?
(breaking ties arbitrarily)

* Combinatorial algorithms (folklore):
* Dynamic range-mode: 0(n?/3) query time & update time
* Static range-mode: O(n%>) query time (after O (n'>)-time preprocessing)

Dynamic Range-Mode Query

* Maintain an integer array A[1], A[2], ..., A[n]
* Support Insertions and Deletions

e Query [, r: what is the most frequent element in A[l], A[l + 1], ..., A[r]?
(breaking ties arbitrarily)

* Combinatorial algorithms (folklore):
* Dynamic range-mode: 0(n?/3) query time & update time
* Static range-mode: O(n%>) query time (after O (n'>)-time preprocessing)

e (slight nf1) improvements using FMM are known [SX'20, VX'20, GPVX'21])

Dynamic Range-Mode Query

* Maintain an integer array A[1], A[2], ..., A[n]
* Support Insertions and Deletions

e Query [, r: what is the most frequent element in A[l], A[l + 1], ..., A[r]?
(breaking ties arbitrarily)

* Combinatorial algorithms (folklore):
* Dynamic range-mode: 0(n?/3) query time & update time
* Static range-mode: O(n%>) query time (after O (n'>)-time preprocessing)

e (slight nf1) improvements using FMM are known [SX'20, VX'20, GPVX'21])
e Can these combinatorial algorithms be improved?

Dynamic Range-Mode Query: Lower Bounds

e Static Range-Mode: Tight combinatorial LB

 Under BMM, no combinatorial algorithm can achieve n
and n1.5—€

0.5-¢ query time

preprocessing time [Chan-Durocher-Larsen-Morrison-Wilkinson’14]

Dynamic Range-Mode Query: Lower Bounds

e Static Range-Mode: Tight combinatorial LB

 Under BMM, no combinatorial algorithm can achieve n
and n1.5—€

0.5-¢ query time

preprocessing time [Chan-Durocher-Larsen-Morrison-Wilkinson’14]

* Dynamic Range-Mode LB (NOT Tight ®):
0.5—¢

 Under OMv, no algorithm can achieve n query & update time and

poly(n) preprocessing time.

Dynamic Range-Mode Query: Lower Bounds

e Static Range-Mode: Tight combinatorial LB

 Under BMM, no combinatorial algorithm can achieve n
and n1.5—€

0.5-¢ query time

preprocessing time [Chan-Durocher-Larsen-Morrison-Wilkinson’14]

* Dynamic Range-Mode LB (NOT Tight ®):
0.5—¢

 Under OMv, no algorithm can achieve n query & update time and

poly(n) preprocessing time.

e Our result (tight!): No combinatorial algorithm can solve
Dynamic Range-Mode in n?/3=¢ query & update time and
poly(n) preprocessing time

* Under combinatorial 4-clique hypothesis

Dynamic Range-Mode Query: Lower Bounds

e Static Range-Mode: Tight combinatorial LB

 Under BMM, no combinatorial algorithm can achieve n guery time
and n1°>~¢ preprocessing time [Chan-Durocher-Larsen-Morrison-Wilkinson’14]

* Dynamic Range-Mode LB (NOT Tight ®):
0.5—¢

0.5—-¢

 Under OMv, no algorithm can achieve n query & update time and

poly(n) preprocessing time.

e Our result (tight!): No combinatorial algorithm can solve
Dynamic Range-Mode in n?/3=¢ query & update time and
poly(n) preprocessing time

* Under combinatorial 4-clique hypothesis

Combinatorial k-clique hypothesis: No combinatorial algorithm
can detect k-clique in an n-node graph in O(nk“g) time

Combinatorial Combinatorial

. M . .
Boolean Matrix Mult Triangle Detection
3-0(1) flne-gralned equwal.er?t ’ 3-0(1)
[Vassilevska W. & Williams’10]
generalize

Combinatorial
k-clique Detection

nk—o(l)

Combinatorial k-clique hypothesis: No combinatorial algorithm
can detect k-clique in an n-node graph in O(nk“‘:) time

A proof template

Static LB from Dynamic LB from
(k — 1)-clique hypothesis e gynamic k-clique hypothesis

operations to

Chan et al.’14: Static Range efficiently Our result: Dynamic Range
enumerate the

Mode requires n%37°M time | oytra kth Mode requires n?/37°(1) time
(from combinatorial 3-clique) | node (from combinatorial 4-clique)

A proof template

Static LB from Dynamic LB from
(k — 1)-clique hypothesis e gynamic k-cliqgue hypothesis
operations to
Chan et al.’14: Static Range efficiently Our result: Dynamic Range
_ 0.5-0(1) +: enumerate the _ 2/3-0(1) 4
Mode requires n time | axtra k-th Mode requires n time
(from combinatorial 3-clique) | node (from combinatorial 4-clique)

Tight combinatorial LBs for more dynamic problems:
* Dynamic 2D Orthogonal Range Color Counting n?/37°(0) time (k = 4)

1
* Dynamic d-Dimensional Orthogonal Range Mode n'"2a+1 7°W time (k =2d + 2)

* Dynamic 2-Pattern Document Retrieval n%/37°() time (k = 4)

A proof template

Static LB from Dynamic LB from
(k — 1)-clique hypothesis e gynamic k-cliqgue hypothesis
operations to
Chan et al.’14: Static Range efficiently Our result: Dynamic Range
_ 0.5-0(1) +: enumerate the _ 2/3-0(1) 4
Mode requires n time | axtra k-th Mode requires n time
(from combinatorial 3-clique) | node (from combinatorial 4-clique)

Main takeaway:
(Combinatorial) k-clique hypothesis is useful for dynamic lower bounds!

Previous dynamic LBs mostly used k = 3 (BMM).
(exception: [Gutenberg, Vassilevska Williams, and Wein’20] reduction from 4-clique to
dynamic shortest path)

Dynamic Subgraph Connectivity

* Preprocess a static undirected graph G with m edges

* Maintain a dynamic vertex subset S (“on” vertices)
* Turnonu:S « S U {u}
* Turnoffu: S « S\ {u}
* Query u,v: are u and v connected in the induced subgraph G[S] ?

Dynamic Subgraph Connectivity

* Preprocess a static undirected graph G with m edges

* Maintain a dynamic vertex subset S (“on” vertices)
* Turnonu:S « S U {u}
* Turnoffu: S « S\ {u}
* Query u,v: are u and v connected in the induced subgraph G[S] ?

 Combinatorial algorithm by Chan, Patrascu, and Roditty (FOCS’08) in
. 5(m2/3) update time (amortized)
* 0(m'/3) query time
. (5(m4/3) preprocessing time)

* Can the 2/3 exponent be improved?

Dynamic Subgraph Connectivity

m

Query time

1/3 ===
ml/ Chan-Patrascu-Roditty’08

2/3 m Update time

1 m

Dynamic Subgraph Connectivity

1 @hsmmme e~~~

Query time

Question: can the 2/3 exponent be improved?

1/2

1/3 | . _
"
Ruled out by OMv Chan-Patrascu-Roditty’08

[HKNS'15]

2/3 m Update time

Dynamic Subgraph Connectivity

Query time Our result:

M Wsmmmmn No combinatorial algorithm can achieve
. m?/3¢ ypdate time,

.m1~¢ query time, and

- poly(m)-time preprocessing time

1/2 (under combinatorial 4-Clique hypothesis)

1/3 _
"
Ruled out by OMv Chan-Patrascu-Roditty’08

[HKNS’15]

2/3 m Update time

A new fine-grained conjecture

k-dimensional
generalization

[Combinatorial BMM } — [Combinatorial (k + 1)-c|ique}

Online version
(non-combinatorial)

[OMv (and OuMv) }

[HKNS’15]

A new fine-grained conjecture

k-dimensional
generalization

[Combinatorial BMM } — [Combinatorial (k + 1)-c|ique}

Online version
(non-combinatorial)

[OMv (and OuMv) } —»[OuMv, }

[HKNS’15] (new)

OuMyv, hypothesis

* Pre-process a subset M C {1,2, ...,n}k

* Answer n online queries:
* Given ksets UV, U@ . UK c {12, ...,n},
. Is (U(1) X U@ x ... x U(k)) N M non-empty? Not only “combinatorial”

1+k—¢

* Conjecture: No O(n)-time algorithm exists

* Naturally generalizes OuMv [HKNS’15] (which is OuMv,)

OuMyv, hypothesis

* Pre-process a subset M C {1,2, ...,n}k

* Answer n online queries:
* Given ksets UV, U@ . UK c {12, ...,n},
. Is (U(1) X U@ x ... x U(k)) N M non-empty? Not only “combinatorial”

1+k—¢

* Conjecture: No O(n)-time algorithm exists

* Naturally generalizes OuMv [HKNS’15] (which is OuMv,)

e Useful for dynamic geometry problems in R¥
e Obtain higher lower bounds as dimension k increases

Dynamic Skyline (Maximal) Points Counting

 Maintain a set P of n points in R%
* Insertion: P < P U {x}
* Deletion: P « P \ {x}

* Query: how many “skyline points” does P have?

* x € P isa “skyline point”(“maximal point”) iff no other y € P dominates x
(i.e.y; = x; foralli =1,2,...,d)

Dynamic Skyline (Maximal) Points Counting

 Maintain a set P of n points in R%
* Insertion: P < P U {x}
* Deletion: P « P \ {x}

* Query: how many “skyline points” does P have?

* x € P isa “skyline point”(“maximal point”) iff no other y € P dominates x
(i.e.y; = x; foralli =1,2,...,d)

Chan’03 (adapted): A semi-online algorithm in R2%~1 with 0 (n!~1/k)

update time. . .
Semi-online: When x is inserted, we are

told when x will be deleted in the future

Dynamic Skyline (Maximal) Points Counting

 Maintain a set P of n points in R%
* Insertion: P < P U {x}
* Deletion: P « P \ {x}

* Query: how many “skyline points” does P have?

* x € P isa “skyline point”(“maximal point”) iff no other y € P dominates x
(i.e.y; = x; foralli =1,2,...,d)

Chan’03 (adapted): A semi-online algorithm in R2%~1 with 0 (n!~1/k)

update time. . .
Semi-online: When x is inserted, we are

told when x will be deleted in the future

Our result: this is tight under OuMv,, hypothesis
(The k = 2 case based on OMv was recently independently proved by Dallant & lacono (2021))

Conclusion

* We used combinatorial k-clique hypothesis and OuMv,, hypothesis to prove
tight fine-grained lower bounds for dynamic problems.

Open questions:

e Can Dynamic Subgraph Connectivity have update time better than m?2/3
using fast matrix multiplication?

* What is the optimal update time for Dynamic Skyline Points Counting in R?*?
(semi-online algorithms allowed)

Conclusion

* We used combinatorial k-clique hypothesis and OuMv,, hypothesis to prove
tight fine-grained lower bounds for dynamic problems.

Open questions:

e Can Dynamic Subgraph Connectivity have update time better than m?2/3
using fast matrix multiplication?

* What is the optimal update time for Dynamic Skyline Points Counting in R?*?
(semi-online algorithms allowed)

* Thanks!

