Cooperation via Codes in Restricted Hat Guessing Games

Kai Jin (HKUST)

Ce Jin (Tsinghua University)

Zhaoquan Gu (Guangzhou University)

AAMAS 2019
Hat Guessing Games

Hat Guessing Games have been studied extensively in recent years, due to their connections to

- graph entropy
- circuit complexity
- network coding
- auctions
- ...

Kai Jin, Ce Jin, Zhaoquan Gu
Hat Guessing Games

Hat Guessing Games have been studied extensively in recent years, due to their connections to

- graph entropy
- circuit complexity
- network coding
- auctions
- ...

There are many variations of the Hat Guessing game.
Game definition

We study the *unique-supply* rule (which is a restricted version of the “finite-supply rule” [BHKL09]):
We study the *unique-supply* rule (which is a restricted version of the “finite-supply rule” [BHKL09]):

- A cooperative team of n players, and T hats with *distinct colors* $1, \ldots, T$
- The dealer *uniformly randomly* places k hats to each player, and d hats remain in the dealer’s hand. ($T = nk + d$)
- Each player sees the hats of all other players, but cannot see the hats of his (her) own.
Game definition

(n players and T distinct hats. Each player gets k hats. $d = T - nk \geq 1$ hats remain.)

- Each player guesses k colors. The guess is right iff they exactly match the k colors (s)he receives.
- All players guess simultaneously. No communication is allowed after game starts.
Game definition

(n players and T distinct hats. Each player gets k hats. $d = T - nk \geq 1$ hats remain.)

- Each player guesses k colors. The guess is right iff they exactly match the k colors (s)he receives.
- All players guess simultaneously. No communication is allowed after game starts.

Design a cooperative strategy to maximize winning probability.
Game definition

(n players and T distinct hats. Each player gets k hats. $d = T - nk \geq 1$ hats remain.)

- Each player guesses k colors. The guess is right iff they exactly match the k colors (s)he receives.
- All players guess simultaneously. No communication is allowed after game starts.

Design a cooperative strategy to maximize winning probability. We consider two winning rules:

- **All-right rule**: The team wins iff all players are right
- **One-right rule**: The team wins iff at least one player is right
Game definition

(n players and T distinct hats. Each player gets k hats. \(d = T - nk \geq 1 \) hats remain.)

A simple observation: The probability that player \(i \) is right is \(1/\binom{k+d}{d} \).
Game definition

(\(n \) players and \(T \) distinct hats. Each player gets \(k \) hats. \(d = T - nk \geq 1 \) hats remain.)

A simple observation: The probability that player \(i \) is right is \(\frac{1}{\binom{k+d}{d}} \).

In All-right rule: winning probability \(\leq \frac{1}{\binom{k+d}{d}} \).

Kai Jin, Ce Jin, Zhaoquan Gu

AAMAS 2019 5 / 18
Game definition

(n players and T distinct hats. Each player gets k hats. $d = T - nk \geq 1$ hats remain.)

A simple observation: The probability that player i is right is $1/(^{k+d}_d)$.

In All-right rule: winning probability $\leq 1/(^{k+d}_d)$.
In One-right rule: winning probability $\geq 1/(^{k+d}_d)$.

Kai Jin, Ce Jin, Zhaoquan Gu
Our contributions

- We present general methods to compute best strategies in both winning rules.

- We determine the exact value of maximum winning probability for some interesting special cases in the all-right rule, and the general case in the one-right rule.

- Constructing explicit best strategies leads to some interesting combinatorial problems. We will study the Latin matching, which arises in one of our constructions.
Our contributions

- We present general methods to compute best strategies in both winning rules.
- We determine the exact value of maximum winning probability for some interesting special cases in the all-right rule, and the general case in the one-right rule.

Constructing explicit best strategies leads to some interesting combinatorial problems. We will study the Latin matching, which arises in one of our constructions.
Our contributions

- We present general methods to compute best strategies in both winning rules.
- We determine the exact value of maximum winning probability for some interesting special cases in the all-right rule, and the general case in the one-right rule.
- Constructing explicit best strategies leads to some interesting combinatorial problems. We will study the *Latin matching*, which arises in one of our constructions.
All-right rule: General Case \((n, k, d)\)

Graph \(G(n, k, d)\):

- **Nodes**: all possible placements
- **Edge** \(v_1, v_2\): iff there exists a player who cannot distinguish placements \(v_1\) and \(v_2\).

Graph \(G\) for \((n, k, d) = (2, 1, 2)\):
All-right rule: General Case

(Edge \((v_1, v_2)\) iff there exists a player who cannot distinguish placements \(v_1\) and \(v_2\).)

(Graph \(G\) for \((n, k, d) = (2, 1, 2)\))
All-right rule: General Case

(Edge \((v_1, v_2)\) iff there exists a player who cannot distinguish placements \(v_1\) and \(v_2\).)

\[
\begin{align*}
1 & \rightarrow A, 2 \rightarrow B \\
1 & \rightarrow A, 3 \rightarrow B \\
1 & \rightarrow A, 4 \rightarrow B \\
3 & \rightarrow A, 1 \rightarrow B \\
3 & \rightarrow A, 2 \rightarrow B \\
3 & \rightarrow A, 4 \rightarrow B \\
2 & \rightarrow A, 1 \rightarrow B \\
2 & \rightarrow A, 3 \rightarrow B \\
2 & \rightarrow A, 4 \rightarrow B \\
4 & \rightarrow A, 1 \rightarrow B \\
4 & \rightarrow A, 2 \rightarrow B \\
4 & \rightarrow A, 3 \rightarrow B
\end{align*}
\]

(Graph \(G\) for \((n, k, d) = (2, 1, 2)\))

Theorem: The best winning probability in the all-right winning rule equals \(\alpha(G)/|G|\), where \(\alpha(G)\) denotes the maximum independent set size of \(G\).
All-right rule: General Case

(Edge \((v_1, v_2)\) iff there exists a player who cannot distinguish placements \(v_1\) and \(v_2\).)

\[\begin{align*}
1 &\rightarrow A, 2 \rightarrow B \\
1 &\rightarrow A, 3 \rightarrow B \\
1 &\rightarrow A, 4 \rightarrow B \\
2 &\rightarrow A, 1 \rightarrow B \\
2 &\rightarrow A, 3 \rightarrow B \\
2 &\rightarrow A, 4 \rightarrow B \\
3 &\rightarrow A, 1 \rightarrow B \\
3 &\rightarrow A, 2 \rightarrow B \\
3 &\rightarrow A, 4 \rightarrow B \\
4 &\rightarrow A, 1 \rightarrow B \\
4 &\rightarrow A, 2 \rightarrow B \\
4 &\rightarrow A, 3 \rightarrow B
\end{align*}\]

(Graph \(G\) for \((n, k, d) = (2, 1, 2)\))

Theorem: The best winning probability in the all-right winning rule equals \(\alpha(G)/|G|\), where \(\alpha(G)\) denotes the maximum independent set size of \(G\). Example: \(\alpha(G(2, 1, 2)) = 4\), implying that optimal strategy has \(4/12 = 1/3\) winning probability, matching the \(1/(k+d)\) upper bound.
All-right rule: General Case

(Edge (v_1, v_2) iff there exists a player who cannot distinguish placements v_1 and v_2.)

1→A, 2→B
1→A, 3→B
1→A, 4→B
2→A, 1→B
2→A, 3→B
2→A, 4→B
3→A, 1→B
3→A, 2→B
3→A, 4→B
4→A, 1→B
4→A, 2→B
4→A, 3→B

(Graph G for $(n, k, d) = (2, 1, 2)$)

Theorem: The best winning probability in the all-right winning rule equals $\alpha(G)/|G|$, where $\alpha(G)$ denotes the maximum independent set size of G. Example: $\alpha(G(2, 1, 2)) = 4$, implying that optimal strategy has $4/12 = 1/3$ winning probability, matching the $1/(k+d)$ upper bound.

(In some cases the $1/(k+d)$ upper bound is not achievable. Example: $(n, k, d) = (4, 1, 3)$)
All-right rule: An Interesting Special Case

\((n, k, d) = (n, 1, n - 1)\) under all-right rule.

(total number of hats \(T = 2n - 1\); each of the \(n\) players gets one hat)
(n, k, d) = (n, 1, n − 1) under all-right rule. (total number of hats \(T = 2n − 1 \); each of the \(n \) players gets one hat)

Definition: A *Latin matching* \(f \) satisfies

- \(f : \binom{[2n − 1]}{n − 1} \rightarrow \binom{[2n − 1]}{n} \) is a *perfect matching* in the subset lattice, i.e., \(S \) must be a subset of \(f(S) \). And let \(f^+(S) \) denote the only element in \(f(S) − S \).
- If \(S \) and \(T \) differ by exactly one element (i.e., \(S = \{x_1, x_2, \ldots, x_{n−2}, y\}, \ T = \{x_1, x_2, \ldots, x_{n−2}, z\} \)), then \(f^+(S) \neq f^+(T) \).
Latin Matching

- \(f : \binom{[2n-1]}{n-1} \rightarrow \binom{[2n-1]}{n} \) is a perfect matching in the subset lattice, i.e., \(S \) must be a subset of \(f(S) \). And let \(f^+(S) \) denote the only element in \(f(S) - S \).

- If \(S \) and \(T \) differ by exactly one element (i.e., \(S = \{x_1, x_2, \ldots, x_{n-2}, y\}, T = \{x_1, x_2, \ldots, x_{n-2}, z\} \)), then \(f^+(S) \neq f^+(T) \).

Example of Latin matchings:

- \(n = 2 \): \(f(\{1\}) = \{1, 2\}, f(\{2\}) = \{2, 3\}, f(\{3\}) = \{3, 1\} \).

- \(n = 3 \):

| \((f')^+\) | 1 2 3 4 5 |
|---|---|---|---|---|
| 1 | \(\cdot\) 4 2 5 3 |
| 2 | 4 \(\cdot\) 5 3 1 |
| 3 | 2 5 \(\cdot\) 1 4 |
| 4 | 5 3 1 \(\cdot\) 2 |
| 5 | 3 1 4 2 \(\cdot\) |

\[
\begin{align*}
&\{12\} \{13\} \{14\} \{15\} \{23\} \{24\} \{25\} \{34\} \{35\} \{45\} \\
&\{123\} \{124\} \{125\} \{134\} \{135\} \{145\} \{234\} \{235\} \{245\} \{345\}
\end{align*}
\]
Latin Matching

Example of Latin matching for $n = 5$:

(Explanation: f is cyclic. Black balls denote S and green ball denotes $f(S) - S$. $f(\{3, 4, 5, 6\}) = \{3, 4, 5, 6, 9\}$, $f(\{2, 3, 4, 5\}) = \{2, 3, 4, 5, 8\}$.)
Connection Between Latin Matching and \((n, 1, n - 1)\) Case

- \(f : \binom{[2n-1]}{n-1} \to \binom{[2n-1]}{n}\) is a perfect matching in the subset lattice, i.e., \(S\) must be a subset of \(f(S)\). And let \(f^+(S)\) denote the only element in \(f(S) - S\).
- If \(S\) and \(T\) differ by exactly one element (i.e., \(S = \{x_1, x_2, \ldots, x_{n-2}, y\}\), \(T = \{x_1, x_2, \ldots, x_{n-2}, z\}\)), then \(f^+(S) \neq f^+(T)\).

Theorem: If Latin matching \(f\) exists for \(n\), then

- \(G(n, 1, n - 1)\) is \(n\)-colorable.
- the best winning probability in all-right rule equals \(1/n\). (matching the \(1/(\binom{k+d}{d})\) upper bound)
Connection Between Latin Matching and \((n, 1, n − 1)\) Case

- \(f : \binom{[2n−1]}{n−1} \rightarrow \binom{[2n−1]}{n} \) is a perfect matching in the subset lattice, i.e., \(S\) must be a subset of \(f(S)\). And let \(f^+(S)\) denote the only element in \(f(S) − S\).
- If \(S\) and \(T\) differ by exactly one element (i.e., \(S = \{x_1, x_2, \ldots, x_{n−2}, y\}, T = \{x_1, x_2, \ldots, x_{n−2}, z\}\)), then \(f^+(S) \neq f^+(T)\).

Theorem: If Latin matching \(f\) exists for \(n\), then

- \(G(n, 1, n − 1)\) is \(n\)-colorable.
- the best winning probability in all-right rule equals \(1/n\). (matching the \(1/(k+d)\) upper bound)

Proof Sketch. For a placement \(a = (a_1, \ldots, a_n)\), denote set \(S_a := \{a_1, \ldots, a_n\}\). There exists a unique \(i \in [n]\) such that \(f(S_a − a_i) = S_a\). Assign color \(i\) to \(a\).
Connection Between Latin Matching and \((n, 1, n - 1)\) Case

- \(f : \left[\binom{[2n-1]}{n-1}\right] \rightarrow \left[\binom{[2n-1]}{n}\right]\) is a perfect matching in the subset lattice, i.e., \(S\) must be a subset of \(f(S)\). And let \(f^+(S)\) denote the only element in \(f(S) - S\).
- If \(S\) and \(T\) differ by exactly one element (i.e., \(S = \{x_1, x_2, \ldots, x_{n-2}, y\}, T = \{x_1, x_2, \ldots, x_{n-2}, z\}\)), then \(f^+(S) \neq f^+(T)\).

Theorem: If Latin matching \(f\) exists for \(n\), then

- \(G(n, 1, n - 1)\) is \(n\)-colorable.
- the best winning probability in all-right rule equals \(1/n\). (matching the \(1/(\binom{k+d}{d})\) upper bound)

Proof Sketch. For a placement \(a = (a_1, \ldots, a_n)\), denote set \(S_a := \{a_1, \ldots, a_n\}\). There exists a unique \(i \in [n]\) such that \(f(S_a - a_i) = S_a\). Assign color \(i\) to \(a\).
If two placements \(a = (a_1, \ldots, a_n), b = (b_1, \ldots, b_n)\) have the same color \(i\), then \(a, b\) must differ at \(\geq 2\) coordinates (and thus not adjacent on \(G\)).
Connection Between Latin Matching and \((n, 1, n−1)\) Case

- \(f : \binom{[2n−1]}{n−1} \to \binom{[2n−1]}{n} \) is a perfect matching in the subset lattice, i.e., \(S\) must be a subset of \(f(S)\). And let \(f^+(S)\) denote the only element in \(f(S) − S\).
- If \(S\) and \(T\) differ by exactly one element (i.e., \(S = \{x_1, x_2, \ldots, x_{n−2}, y\}, T = \{x_1, x_2, \ldots, x_{n−2}, z\}\)), then \(f^+(S) \neq f^+(T)\).

Theorem: If Latin matching \(f\) exists for \(n\), then

- \(G(n,1,n−1)\) is \(n\)-colorable.
- the best winning probability in all-right rule equals \(1/n\). (matching the \(1/(k+d)\) upper bound)

Proof Sketch. For a placement \(a = (a_1, \ldots, a_n)\), denote set \(S_a := \{a_1, \ldots, a_n\}\). There exists a unique \(i \in [n]\) such that \(f(S_a − a_i) = S_a\). Assign color \(i\) to \(a\).
If two placements \(a = (a_1, \ldots, a_n), b = (b_1, \ldots, b_n)\) have the same color \(i\), then \(a, b\) must differ at \(\geq 2\) coordinates (and thus not adjacent on \(G\)).
This \(n\)-coloring induces \(n\) different independent sets of \(G\).
Discussion on Latin Matching

Theorem: If Latin matching exists for n, then n is a prime number.
Discussion on Latin Matching

Theorem: If Latin matching exists for n, then n is a prime number. (Proved using a double-counting argument and a number-theoretic lemma)
Discussion on Latin Matching

Theorem: If Latin matching exists for n, then n is a prime number. (Proved using a double-counting argument and a number-theoretic lemma)

Connection with coding theory:

- The Latin matching construction for $n = 5$ case can be obtained via extended Hamming[$8,4,4$] codes.
- Application of Latin matchings in our unique-supply variation of Hat Guessing Game is analogous to the application of Hamming codes in the original (red-blue) variation.
Bipartite graph $H(n, k, d)$:
- Left nodes: possible observations of every player
- Player A's observations
- Player B's observations
- All possible placements

Bipartite graph H for $(n, k, d) = (2, 1, 2)$
One-right Rule

Bipartite graph $H(n, k, d)$:
- Left nodes: possible observations of every player
- Right nodes: possible placements

Bipartite graph H for $(n, k, d) = (2, 1, 2)$
One-right Rule

Bipartite graph $H(n, k, d)$:

- Left nodes: possible observations of every player
- Right nodes: possible placements
- Edge: observation consistent with placement

Bipartite graph H for $(n, k, d) = (2, 1, 2)$
One-right Rule

Lemma: The best winning probability in the one-right rule equals $\nu(H)/|G|$, where $\nu(H)$ denotes the **maximum matching** size of graph H.

Theorem: The best winning probability in the one-right rule equals $\min\{1, n/(k+d)\}$.

Bipartite graph H for $(n, k, d) = (2, 1, 2)$
One-right Rule

Theorem: The best winning probability in the one-right rule equals \(\min\{1, \frac{n}{k+d}\} \).

Proof Sketch. \(H \) is a regular bipartite graph (vertices on the same side have the same degree). This implies that \(H \) has a complete matching.
The optimal strategy for one-right rule obtained from complete matching is not explicitly represented. For some restricted case, e.g., $n = 2$ or $k = 1$, explicit strategies could be obtained via combinatorial constructions.
The optimal strategy for one-right rule obtained from complete matching is not explicitly represented. For some restricted case, e.g., $n = 2$ or $k = 1$, explicit strategies could be obtained via combinatorial constructions.

Can we show/disprove the existence of Latin matchings for primes $n > 5$? (It is known that cyclic Latin matching does not exist for $n = 7$.)
The optimal strategy for one-right rule obtained from complete matching is not explicitly represented. For some restricted case, e.g., $n = 2$ or $k = 1$, explicit strategies could be obtained via combinatorial constructions.

Can we show/disprove the existence of Latin matchings for primes $n > 5$? (It is known that cyclic Latin matching does not exist for $n = 7$.)

Can we find other applications of combinatorial tools (e.g., codes, ordered designs, Latin square/Latin matching) in cooperative multi-player games?
Thank you!