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• Maintain some data 𝐷 (graphs, sequences, …)
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• Answer queries about 𝐷 (connectivity?...)

• Best possible update time and query time?
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This work:
A collection of new 
Lower Bounds 
based on 
generalized versions 
of BMM and OMv
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Combinatorial BMM hypothesis

• Input: 𝑛 × 𝑛 Boolean matrices

• Output:  Boolean matrix product

• Conjecture: No 𝑂 𝑛3−𝜀 -time “combinatorial” algorithm exists
• Current best: 𝒏𝟑 log log 𝑛 𝑂 1 / 𝐥𝐨𝐠𝒏 𝟒 [Yu’15]

𝐴 𝐵

𝐴𝐵

Algorithms avoiding Fast Matrix 
Multiplication (e.g. Strassen’s) 



OMv hypothesis [Henzinger-Krinninger-Nanongkai-Saranurak STOC’15]
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• Output: (in an online fashion)
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OMv hypothesis [Henzinger-Krinninger-Nanongkai-Saranurak STOC’15]

• Input: Boolean

• Output: (in an online fashion)

• Conjecture: No 𝑂 𝑛3−𝜀 -time algorithm exists

• Current best: 𝑛3/2Ω log 𝑛 time [Larsen-Williams’17]
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(breaking ties arbitrarily)
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• Static Range-Mode: Tight combinatorial LB
• Under BMM, no combinatorial algorithm can achieve 𝒏𝟎.𝟓−𝜺 query time 
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Combinatorial
Boolean Matrix Mult

Combinatorial
Triangle Detection

fine-grained equivalent
[Vassilevska W. & Williams’10]𝑛3−𝑜 1 𝑛3−𝑜 1

generalize

Combinatorial 
𝑘-clique Detection

𝑛𝑘−𝑜 1

Combinatorial 𝑘-clique hypothesis: No combinatorial algorithm 

can detect 𝑘-clique in an 𝑛-node graph in 𝑂 𝑛𝑘−𝜀 time
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Tight combinatorial LBs for more dynamic problems:

• Dynamic 2D Orthogonal Range Color Counting 𝑛2/3−𝑜(1) time (𝑘 = 4)

• Dynamic 𝑑-Dimensional Orthogonal Range Mode 𝑛1−
1

2𝑑+1
−𝑜(1) time (𝑘 = 2𝑑 + 2)

• Dynamic 2-Pattern Document Retrieval 𝑛2/3−𝑜(1) time (𝑘 = 4)

• … 

Main takeaway:
(Combinatorial) 𝒌-clique hypothesis is useful for dynamic lower bounds!

Previous dynamic LBs mostly used 𝑘 = 3 (BMM).
(exception: [Gutenberg, Vassilevska Williams, and Wein’20] reduction from 4-clique to 

dynamic shortest path)



Dynamic Subgraph Connectivity

• Preprocess a static undirected graph 𝐺 with 𝑚 edges

• Maintain a dynamic vertex subset 𝑆 (“on” vertices)
• Turn on 𝑢: 𝑆 ← 𝑆 ∪ {𝑢}

• Turn off 𝑢: 𝑆 ← 𝑆 ∖ {𝑢}

• Query 𝑢, 𝑣:  are 𝑢 and 𝑣 connected in the induced subgraph 𝐺[𝑆] ?
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• Preprocess a static undirected graph 𝐺 with 𝑚 edges

• Maintain a dynamic vertex subset 𝑆 (“on” vertices)
• Turn on 𝑢: 𝑆 ← 𝑆 ∪ {𝑢}

• Turn off 𝑢: 𝑆 ← 𝑆 ∖ {𝑢}

• Query 𝑢, 𝑣:  are 𝑢 and 𝑣 connected in the induced subgraph 𝐺[𝑆] ?

• Combinatorial algorithm by Chan, Pătraşcu, and Roditty (FOCS’08) in
• ෩𝑶 𝒎𝟐/𝟑 update time (amortized)

• ෨𝑂 𝑚1/3 query time 

• ( ෨𝑂 𝑚4/3 preprocessing time)

• Can the 2/3 exponent be improved?
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Query time

Update time𝑚

𝑚

Ruled out by OMv
[HKNS’15]

𝑚1/2 𝑚2/31
1

New

trivial

Chan-Pătraşcu-Roditty’08

𝑚1/2

𝑚1/3

Question: can the 2/3 exponent be improved?

Our result:
No combinatorial algorithm can achieve

·𝒎𝟐/𝟑−𝜺 update time, 
· 𝒎𝟏−𝜺 query time, and
· poly(𝑚)-time preprocessing time
(under combinatorial 4-Clique hypothesis) 
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OuMv𝑘 hypothesis

• Pre-process a subset 𝑀 ⊆ {1,2, … , 𝑛}𝑘

• Answer 𝑛 online queries:
• Given 𝑘 sets 𝑈 1 , 𝑈 2 , … , 𝑈 𝑘 ⊆ {1,2,… , 𝑛},

• Is 𝑈 1 × 𝑈 2 ×⋯× 𝑈 𝑘 ∩𝑀 non-empty?

• Conjecture: No 𝑂 𝑛1+𝑘−𝜀 -time algorithm exists

• Naturally generalizes OuMv [HKNS’15]  (which is OuMv2)

Not only “combinatorial”
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• Answer 𝑛 online queries:
• Given 𝑘 sets 𝑈 1 , 𝑈 2 , … , 𝑈 𝑘 ⊆ {1,2,… , 𝑛},

• Is 𝑈 1 × 𝑈 2 ×⋯× 𝑈 𝑘 ∩𝑀 non-empty?

• Conjecture: No 𝑂 𝑛1+𝑘−𝜀 -time algorithm exists

• Naturally generalizes OuMv [HKNS’15]  (which is OuMv2)

• Useful for dynamic geometry problems in 𝐑𝑘

• Obtain higher lower bounds as dimension 𝑘 increases

Not only “combinatorial”



Dynamic Skyline (Maximal) Points Counting
• Maintain a set 𝑃 of 𝑛 points in 𝐑𝑑

• Insertion: 𝑃 ← 𝑃 ∪ {𝑥}

• Deletion: 𝑃 ← 𝑃 ∖ {𝑥}

• Query: how many “skyline points” does 𝑃 have?
• 𝑥 ∈ 𝑃 is a “skyline point”(“maximal point”) iff no other 𝑦 ∈ 𝑃 dominates 𝑥

(i.e. 𝑦𝑖 ≥ 𝑥𝑖 for all 𝑖 = 1,2,… , 𝑑)
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told when 𝑥 will be deleted in the future
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• Deletion: 𝑃 ← 𝑃 ∖ {𝑥}

• Query: how many “skyline points” does 𝑃 have?
• 𝑥 ∈ 𝑃 is a “skyline point”(“maximal point”) iff no other 𝑦 ∈ 𝑃 dominates 𝑥
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Chan’03 (adapted): A semi-online algorithm in 𝐑2𝑘−1 with ෨𝑂 𝑛1−1/𝑘

update time.
Semi-online: When 𝑥 is inserted, we are 
told when 𝑥 will be deleted in the future

Our result: this is tight under OuM𝐯𝒌 hypothesis

(The 𝑘 = 2 case based on OMv was recently independently proved by Dallant & Iacono (2021) )



Conclusion

• We used combinatorial 𝑘-clique hypothesis and OuMv𝑘 hypothesis to prove  
tight fine-grained lower bounds for dynamic problems.

Open questions:

• Can Dynamic Subgraph Connectivity have update time better than 𝑚2/3

using fast matrix multiplication?

• What is the optimal update time for Dynamic Skyline Points Counting in 𝐑2𝑘? 
(semi-online algorithms allowed)

• .
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• We used combinatorial 𝑘-clique hypothesis and OuMv𝑘 hypothesis to prove  
tight fine-grained lower bounds for dynamic problems.

Open questions:

• Can Dynamic Subgraph Connectivity have update time better than 𝑚2/3

using fast matrix multiplication?

• What is the optimal update time for Dynamic Skyline Points Counting in 𝐑2𝑘? 
(semi-online algorithms allowed)

• Thanks!


