Tight Dynamic Problem Lower Bounds from Generalized BMM and OMv

STOC 2022

- Maintain some data D (graphs, sequences, ...)
- Support small <u>updates</u> to D (insertions, deletions, ...)
- Answer <u>queries</u> about *D* (connectivity?...)
- Best possible update time and query time?

- Maintain some data D (graphs, sequences, ...)
- Support small <u>updates</u> to D (insertions, deletions, ...)
- Answer <u>queries</u> about *D* (connectivity?...)
- Best possible update time and query time?
- Unconditional Lower Bounds are stuck at polylog(n) \otimes

- Maintain some data D (graphs, sequences, ...)
- Support small <u>updates</u> to D (insertions, deletions, ...)
- Answer <u>queries</u> about *D* (connectivity?...)
- Best possible update time and query time?
- Unconditional Lower Bounds are stuck at polylog(n) \otimes
- Higher LBs from <u>Fine-Grained Conjectures</u>!
 - A long line of work
 - [Pătraşcu STOC'10]

...

- [Abboud and Vassilevska Williams FOCS'14]
- [Henzinger, Krinninger, Nanongkai, and Saranurak STOC'15]

- Maintain some data D (graphs, sequences, ...)
- Support small <u>updates</u> to D (insertions, deletions, ...)
- Answer <u>queries</u> about *D* (connectivity?...)
- Best possible update time and query time?

- Maintain some data D (graphs, sequences, ...)
- Support small <u>updates</u> to D (insertions, deletions, ...)
- Answer <u>queries</u> about *D* (connectivity?...)
- Best possible update time and query time?

Combinatorial BMM hypothesis

• Input: $n \times n$ Boolean matrices

• Output: Boolean matrix product

Combinatorial BMM hypothesis

• Input: $n \times n$ Boolean matrices

• Output: Boolean matrix product

• Conjecture: No $O(n^{3-\varepsilon})$ -time <u>"combinatorial" algorithm</u> exists

Combinatorial BMM hypothesis

• Input: $n \times n$ Boolean matrices

• Output: Boolean matrix product

- Conjecture: No $O(n^{3-\varepsilon})$ -time <u>"combinatorial" algorithm</u> exists
 - Current best: $n^{3}(\log \log n)^{O(1)}/(\log n)^{4}$ [Yu'15]

Algorithms avoiding Fast Matrix Multiplication (e.g. Strassen's)

OMv hypothesis [Henzinger-Krinninger-Nanongkai-Saranurak STOC'15]

OMv hypothesis [Henzinger-Krinninger-Nanongkai-Saranurak STOC'15]

• Conjecture: No $O(n^{3-\varepsilon})$ -time algorithm exists

OMv hypothesis [Henzinger-Krinninger-Nanongkai-Saranurak STOC'15]

- Conjecture: No $O(n^{3-\varepsilon})$ -time algorithm exists
 - Current best: $n^3/2^{\Omega(\sqrt{\log n})}$ time [Larsen-Williams'17]

- Maintain an integer array A[1], A[2], ..., A[n]
- Support Insertions and Deletions
- Query *l*, *r*: what is the most frequent element in *A*[*l*], *A*[*l* + 1], ..., *A*[*r*]? (breaking ties arbitrarily)

- Maintain an integer array $A[1], A[2], \dots, A[n]$
- Support Insertions and Deletions
- Query *l*, *r*: what is the most frequent element in *A*[*l*], *A*[*l* + 1], ..., *A*[*r*]? (breaking ties arbitrarily)
- Combinatorial algorithms (folklore):
 - Dynamic range-mode: $\widetilde{O}(n^{2/3})$ query time & update time

- Maintain an integer array A[1], A[2], ..., A[n]
- Support Insertions and Deletions
- Query *l*, *r*: what is the most frequent element in *A*[*l*], *A*[*l* + 1], ..., *A*[*r*]? (breaking ties arbitrarily)
- Combinatorial algorithms (folklore):
 - Dynamic range-mode: $\widetilde{O}(n^{2/3})$ query time & update time
 - Static range-mode: $\tilde{O}(n^{0.5})$ query time (after $\tilde{O}(n^{1.5})$ -time preprocessing)

- Maintain an integer array A[1], A[2], ..., A[n]
- Support Insertions and Deletions
- Query *l*, *r*: what is the most frequent element in *A*[*l*], *A*[*l* + 1], ..., *A*[*r*]? (breaking ties arbitrarily)
- Combinatorial algorithms (folklore):
 - Dynamic range-mode: $\widetilde{O}(n^{2/3})$ query time & update time
 - Static range-mode: $\tilde{O}(n^{0.5})$ query time (after $\tilde{O}(n^{1.5})$ -time preprocessing)
- (slight $n^{\Omega(1)}$ improvements using FMM are known [SX'20, VX'20, GPVX'21])

- Maintain an integer array A[1], A[2], ..., A[n]
- Support Insertions and Deletions
- Query *l*, *r*: what is the most frequent element in *A*[*l*], *A*[*l* + 1], ..., *A*[*r*]? (breaking ties arbitrarily)
- Combinatorial algorithms (folklore):
 - Dynamic range-mode: $\widetilde{O}(n^{2/3})$ query time & update time
 - Static range-mode: $\tilde{O}(n^{0.5})$ query time (after $\tilde{O}(n^{1.5})$ -time preprocessing)
- (slight $n^{\Omega(1)}$ improvements using FMM are known [SX'20, VX'20, GPVX'21])
- Can these combinatorial algorithms be improved?

- *Static* Range-Mode: <u>Tight</u> combinatorial LB
 - <u>Under BMM</u>, no combinatorial algorithm can achieve $n^{0.5-\varepsilon}$ query time and $n^{1.5-\varepsilon}$ preprocessing time [Chan-Durocher-Larsen-Morrison-Wilkinson'14]

- *Static* Range-Mode: <u>Tight</u> combinatorial LB
 - <u>Under BMM</u>, no combinatorial algorithm can achieve $n^{0.5-\varepsilon}$ query time and $n^{1.5-\varepsilon}$ preprocessing time [Chan-Durocher-Larsen-Morrison-Wilkinson'14]
- *Dynamic* Range-Mode LB (NOT Tight ☺):
 - <u>Under OMv</u>, no algorithm can achieve $n^{0.5-\varepsilon}$ query & update time and poly(n) preprocessing time.

- *Static* Range-Mode: <u>Tight</u> combinatorial LB
 - <u>Under BMM</u>, no combinatorial algorithm can achieve $n^{0.5-\varepsilon}$ query time and $n^{1.5-\varepsilon}$ preprocessing time [Chan-Durocher-Larsen-Morrison-Wilkinson'14]
- *Dynamic* Range-Mode LB (NOT Tight ☺):
 - <u>Under OMv</u>, no algorithm can achieve $n^{0.5-\varepsilon}$ query & update time and poly(n) preprocessing time.
- Our result (tight!): No combinatorial algorithm can solve Dynamic Range-Mode in $n^{2/3-\varepsilon}$ query & update time and poly(n) preprocessing time
 - Under combinatorial 4-clique hypothesis

- *Static* Range-Mode: <u>Tight</u> combinatorial LB
 - <u>Under BMM</u>, no combinatorial algorithm can achieve $n^{0.5-\varepsilon}$ query time and $n^{1.5-\varepsilon}$ preprocessing time [Chan-Durocher-Larsen-Morrison-Wilkinson'14]
- *Dynamic* Range-Mode LB (NOT Tight ☺):
 - <u>Under OMv</u>, no algorithm can achieve $n^{0.5-\varepsilon}$ query & update time and poly(n) preprocessing time.
- Our result (tight!): No combinatorial algorithm can solve Dynamic Range-Mode in $n^{2/3-\varepsilon}$ query & update time and poly(n) preprocessing time
 - Under combinatorial 4-clique hypothesis

Combinatorial k-clique hypothesis: No combinatorial algorithm can detect k-clique in an n-node graph in $O(n^{k-\varepsilon})$ time

Combinatorial k-clique hypothesis: No combinatorial algorithm can detect k-clique in an n-node graph in $O(n^{k-\varepsilon})$ time

A proof template

Static LB from (k-1)-clique hypothesis

Use dynamic operations to efficiently enumerate the extra *k*-th node Dynamic LB from *k*-clique hypothesis

Our result: *Dynamic* Range Mode requires $n^{2/3-o(1)}$ time (from combinatorial 4-clique)

Chan et al.'14: *Static* Range Mode requires $n^{0.5-o(1)}$ time (from combinatorial 3-clique)

Tight combinatorial LBs for more dynamic problems:

- Dynamic 2D Orthogonal Range Color Counting $n^{2/3-o(1)}$ time (k = 4)
- Dynamic *d*-Dimensional Orthogonal Range Mode $n^{1-\frac{1}{2d+1}-o(1)}$ time (k = 2d + 2)
- Dynamic 2-Pattern Document Retrieval $n^{2/3-o(1)}$ time (k = 4)

Main takeaway:

(Combinatorial) k-clique hypothesis is useful for dynamic lower bounds!

Previous dynamic LBs mostly used k = 3 (BMM).

(exception: [Gutenberg, Vassilevska Williams, and Wein'20] reduction from 4-clique to dynamic shortest path)

Dynamic Subgraph Connectivity

- Preprocess a static undirected graph G with m edges
- Maintain a dynamic <u>vertex subset S</u> ("on" vertices)
 - Turn on $u: S \leftarrow S \cup \{u\}$
 - Turn off $u: S \leftarrow S \setminus \{u\}$
 - Query u, v: are u and v connected in the induced subgraph G[S] ?

Dynamic Subgraph Connectivity

- Preprocess a static undirected graph G with m edges
- Maintain a dynamic <u>vertex subset S</u> ("on" vertices)
 - Turn on $u: S \leftarrow S \cup \{u\}$
 - Turn off $u: S \leftarrow S \setminus \{u\}$
 - Query u, v: are u and v connected in the induced subgraph G[S]?
- Combinatorial algorithm by Chan, Pătraşcu, and Roditty (FOCS'08) in
 - $\widetilde{O}(m^{2/3})$ update time (amortized)
 - $\tilde{O}(m^{1/3})$ query time
 - $(\tilde{O}(m^{4/3}))$ preprocessing time)
- Can the 2/3 exponent be improved?

Dynamic Subgraph Connectivity

A new fine-grained conjecture

$OuMv_k$ hypothesis

- Pre-process a subset $M \subseteq \{1, 2, ..., n\}^k$
- Answer *n* online queries:
 - Given k sets $U^{(1)}, U^{(2)}, ..., U^{(k)} \subseteq \{1, 2, ..., n\},\$
 - Is $(U^{(1)} \times U^{(2)} \times \cdots \times U^{(k)}) \cap M$ non-empty?

Not only "combinatorial"

- Conjecture: No $O(n^{1+k-\varepsilon})$ -time algorithm exists
- Naturally generalizes OuMv [HKNS'15] (which is $OuMv_2$)

$OuMv_k$ hypothesis

- Pre-process a subset $M \subseteq \{1, 2, ..., n\}^k$
- Answer *n* online queries:
 - Given k sets $U^{(1)}, U^{(2)}, \dots, U^{(k)} \subseteq \{1, 2, \dots, n\},\$
 - Is $(U^{(1)} \times U^{(2)} \times \cdots \times U^{(k)}) \cap M$ non-empty?

Not only "combinatorial"

- Conjecture: No $O(n^{1+k-\varepsilon})$ -time algorithm exists
- Naturally generalizes OuMv [HKNS'15] (which is $OuMv_2$)
- Useful for dynamic geometry problems in \mathbf{R}^k
 - Obtain higher lower bounds as dimension k increases

Dynamic Skyline (Maximal) Points Counting

- Maintain a set P of n points in \mathbf{R}^d
- Insertion: $P \leftarrow P \cup \{x\}$
- Deletion: $P \leftarrow P \setminus \{x\}$
- Query: how many "skyline points" does P have?
 - $x \in P$ is a "skyline point" ("maximal point") iff no other $y \in P$ dominates x(i.e. $y_i \ge x_i$ for all i = 1, 2, ..., d)

Dynamic Skyline (Maximal) Points Counting

- Maintain a set P of n points in \mathbf{R}^d
- Insertion: $P \leftarrow P \cup \{x\}$
- Deletion: $P \leftarrow P \setminus \{x\}$
- Query: how many "skyline points" does P have?
 - $x \in P$ is a "skyline point" ("maximal point") iff no other $y \in P$ dominates x(i.e. $y_i \ge x_i$ for all i = 1, 2, ..., d)

Chan'03 (adapted): A *semi-online* algorithm in \mathbb{R}^{2k-1} with $\tilde{O}(n^{1-1/k})$ update time.

Semi-online: When x is inserted, we are told when x will be deleted in the future

Dynamic Skyline (Maximal) Points Counting

- Maintain a set P of n points in \mathbf{R}^d
- Insertion: $P \leftarrow P \cup \{x\}$
- Deletion: $P \leftarrow P \setminus \{x\}$
- Query: how many "skyline points" does P have?
 - $x \in P$ is a "skyline point" ("maximal point") iff no other $y \in P$ dominates x(i.e. $y_i \ge x_i$ for all i = 1, 2, ..., d)

Chan'03 (adapted): A *semi-online* algorithm in \mathbb{R}^{2k-1} with $\tilde{O}(n^{1-1/k})$ update time.

Semi-online: When x is inserted, we are told when x will be deleted in the future

Our result: this is <u>tight</u> under **OuMv**_k hypothesis

(The k = 2 case based on OMv was recently independently proved by Dallant & Iacono (2021))

Conclusion

• We used combinatorial k-clique hypothesis and OuMv_k hypothesis to prove tight fine-grained lower bounds for dynamic problems.

Open questions:

- Can <u>Dynamic Subgraph Connectivity</u> have update time better than $m^{2/3}$ using fast matrix multiplication?
- What is the optimal update time for <u>Dynamic Skyline Points Counting in R^{2k}</u>? (semi-online algorithms allowed)

Conclusion

• We used combinatorial k-clique hypothesis and OuMv_k hypothesis to prove tight fine-grained lower bounds for dynamic problems.

Open questions:

- Can <u>Dynamic Subgraph Connectivity</u> have update time better than $m^{2/3}$ using fast matrix multiplication?
- What is the optimal update time for <u>Dynamic Skyline Points Counting in R^{2k}</u>? (semi-online algorithms allowed)

• Thanks!