Tight Dynamic Problem Lower Bounds from Generalized BMM and OMv

Yinzhan Xu MIT

STOC 2022

Dynamic problems

- Maintain some data D (graphs, sequences, ...)
- Support small updates to D (insertions, deletions, ...)
- Answer queries about D (connectivity?...)
- Best possible update time and query time?

Dynamic problems

- Maintain some data D (graphs, sequences, ...)
- Support small updates to D (insertions, deletions, ...)
- Answer queries about D (connectivity?...)
- Best possible update time and query time?
- Unconditional Lower Bounds are stuck at polylog(n) :\%

Dynamic problems

- Maintain some data D (graphs, sequences, ...)
- Support small updates to D (insertions, deletions, ...)
- Answer queries about D (connectivity?...)
- Best possible update time and query time?
- Unconditional Lower Bounds are stuck at polylog(n) :\%
- Higher LBs from Fine-Grained Conjectures!
- A long line of work
- [Pătraşcu STOC'10]
- [Abboud and Vassilevska Williams FOCS'14]
- [Henzinger, Krinninger, Nanongkai, and Saranurak STOC'15]

Dynamic problems

- Maintain some data D (graphs, sequences, ...)
- Support small updates to D (insertions, deletions, ...)
- Answer queries about D (connectivity?...)
- Best possible update time and query time?

Dynamic problems

- Maintain some data D (graphs, sequences, ...)
- Support small updates to D (insertions, deletions, ...)
- Answer queries about D (connectivity?...)
- Best possible update time and query time?

Combinatorial BMM hypothesis

- Input: $n \times n$ Boolean matrices A
- Output: Boolean matrix product $A B$

Combinatorial BMM hypothesis

- Input: $n \times n$ Boolean matrices \square
- Output: Boolean matrix product $A B$
- Conjecture: No $O\left(n^{3-\varepsilon}\right)$-time "combinatorial" algorithm exists

Combinatorial BMM hypothesis

- Input: $n \times n$ Boolean matrices

- Conjecture: No $O\left(n^{3-\varepsilon}\right)$-time "combinatorial" algorithm exists
- Current best: $\boldsymbol{n}^{3}(\log \log n)^{O(1)} /(\log \boldsymbol{n})^{4} \quad$ [Yu'15]

OMv hypothesis [Henzinger-Krinninger-Nanongkai-Saranurak STOC'15]

- Input: Boolean

- Output:

OMv hypothesis [Henzinger-Krinninger-Nanongkai-Saranurak STOC'15]

- Input: Boolean

- Output:

$$
M v_{1} M v_{2} \quad M v_{n}
$$

(in an online fashion)

Not only "combinatorial"

- Conjecture: No $O\left(n^{3-\varepsilon}\right)$-time algorithm exists

OMv hypothesis [Henzinger-Krinninger-Nanongkai-Saranurak STOC'15]

- Input: Boolean

- Output:

$$
M v_{1} M v_{2} \quad M v_{n}
$$

(in an online fashion)

Not only "combinatorial"

- Conjecture: No $O\left(n^{3-\varepsilon}\right)$-time algorithm exists
- Current best: $n^{3} / 2^{\Omega(\sqrt{\log n})}$ time [Larsen-Williams'17]

Dynamic Range-Mode Query

- Maintain an integer array $A[1], A[2], \ldots, A[n]$
- Support Insertions and Deletions
- Query l, r : what is the most frequent element in $A[l], A[l+1], \ldots, A[r]$? (breaking ties arbitrarily)

Dynamic Range-Mode Query

- Maintain an integer array $A[1], A[2], \ldots, A[n]$
- Support Insertions and Deletions
- Query l, r : what is the most frequent element in $A[l], A[l+1], \ldots, A[r]$? (breaking ties arbitrarily)
- Combinatorial algorithms (folklore):
- Dynamic range-mode: $\widetilde{\boldsymbol{O}}\left(\boldsymbol{n}^{2 / 3}\right)$ query time \& update time

Dynamic Range-Mode Query

- Maintain an integer array $A[1], A[2], \ldots, A[n]$
- Support Insertions and Deletions
- Query l, r : what is the most frequent element in $A[l], A[l+1], \ldots, A[r]$? (breaking ties arbitrarily)
- Combinatorial algorithms (folklore):
- Dynamic range-mode: $\widetilde{\boldsymbol{O}}\left(\boldsymbol{n}^{2 / 3}\right)$ query time \& update time
- Static range-mode: $\widetilde{\boldsymbol{O}}\left(\boldsymbol{n}^{0.5}\right)$ query time (after $\widetilde{O}\left(n^{1.5}\right)$-time preprocessing)

Dynamic Range-Mode Query

- Maintain an integer array $A[1], A[2], \ldots, A[n]$
- Support Insertions and Deletions
- Query l, r : what is the most frequent element in $A[l], A[l+1], \ldots, A[r]$? (breaking ties arbitrarily)
- Combinatorial algorithms (folklore):
- Dynamic range-mode: $\widetilde{\boldsymbol{O}}\left(\boldsymbol{n}^{2 / 3}\right)$ query time \& update time
- Static range-mode: $\widetilde{\boldsymbol{O}}\left(\boldsymbol{n}^{\mathbf{0 . 5}}\right)$ query time (after $\widetilde{O}\left(n^{1.5}\right)$-time preprocessing)
- (slight $n^{\Omega(1)}$ improvements using FMM are known [SX'20, VX'20, GPVX'21])

Dynamic Range-Mode Query

- Maintain an integer array $A[1], A[2], \ldots, A[n]$
- Support Insertions and Deletions
- Query l, r : what is the most frequent element in $A[l], A[l+1], \ldots, A[r]$? (breaking ties arbitrarily)
- Combinatorial algorithms (folklore):
- Dynamic range-mode: $\widetilde{\boldsymbol{O}}\left(\boldsymbol{n}^{2 / 3}\right)$ query time \& update time
- Static range-mode: $\widetilde{\boldsymbol{O}}\left(\boldsymbol{n}^{\mathbf{0 . 5}}\right)$ query time (after $\tilde{O}\left(n^{1.5}\right)$-time preprocessing)
- (slight $n^{\Omega(1)}$ improvements using FMM are known [SX'20, VX'20, GPVX'21])
- Can these combinatorial algorithms be improved?

Dynamic Range-Mode Query: Lower Bounds

- Static Range-Mode: Tight combinatorial LB
- Under BMM, no combinatorial algorithm can achieve $\boldsymbol{n}^{0.5-\varepsilon}$ query time and $n^{1.5-\varepsilon}$ preprocessing time [Chan-Durocher-Larsen-Morrison-Wilkinson'14]

Dynamic Range-Mode Query: Lower Bounds

- Static Range-Mode: Tight combinatorial LB
- Under BMM, no combinatorial algorithm can achieve $\boldsymbol{n}^{0.5-\varepsilon}$ query time and $n^{1.5-\varepsilon}$ preprocessing time [Chan-Durocher-Larsen-Morrison-Wilkinson'14]
- Dynamic Range-Mode LB (NOT Tight $:$):
- Under OMv, no algorithm can achieve $\boldsymbol{n}^{\mathbf{0 . 5 - \varepsilon}}$ query \& update time and poly (n) preprocessing time.

Dynamic Range-Mode Query: Lower Bounds

- Static Range-Mode: Tight combinatorial LB
- Under BMM, no combinatorial algorithm can achieve $\boldsymbol{n}^{0.5-\varepsilon}$ query time and $n^{1.5-\varepsilon}$ preprocessing time [Chan-Durocher-Larsen-Morrison-Wilkinson'14]
- Dynamic Range-Mode LB (NOT Tight $:$):
- Under OMv, no algorithm can achieve $\boldsymbol{n}^{0.5-\varepsilon}$ query \& update time and poly (n) preprocessing time.
- Our result (tight!): No combinatorial algorithm can solve Dynamic Range-Mode in $\boldsymbol{n}^{2 / 3-\varepsilon}$ query \& update time and poly (n) preprocessing time
- Under combinatorial 4-clique hypothesis

Dynamic Range-Mode Query: Lower Bounds

- Static Range-Mode: Tight combinatorial LB
- Under BMM, no combinatorial algorithm can achieve $\boldsymbol{n}^{\mathbf{0 . 5 - \varepsilon}}$ query time and $n^{1.5-\varepsilon}$ preprocessing time [Chan-Durocher-Larsen-Morrison-Wilkinson'14]
- Dynamic Range-Mode LB (NOT Tight $:$):
- Under OMv, no algorithm can achieve $\boldsymbol{n}^{0.5-\varepsilon}$ query \& update time and poly (n) preprocessing time.
- Our result (tight!): No combinatorial algorithm can solve Dynamic Range-Mode in $\boldsymbol{n}^{2 / 3-\varepsilon}$ query \& update time and poly (n) preprocessing time
- Under combinatorial 4-clique hypothesis

Combinatorial k-clique hypothesis: No combinatorial algorithm can detect k-clique in an n-node graph in $O\left(n^{k-\varepsilon}\right)$ time

Combinatorial k-clique hypothesis: No combinatorial algorithm can detect k-clique in an n-node graph in $O\left(n^{k-\varepsilon}\right)$ time

A proof template

Static LB from

($k-1$)-clique hypothesis

Chan et al.'14: Static Range
Mode requires $n^{0.5-o(1)}$ time (from combinatorial 3-clique)

Use dynamic operations to efficiently enumerate the extra k-th node

Dynamic LB from k-clique hypothesis

Our result: Dynamic Range
Mode requires $n^{2 / 3-o(1)}$ time (from combinatorial 4-clique)

A proof template

Static LB from
 ($k-1$)-clique hypothesis

Chan et al.'14: Static Range Mode requires $n^{0.5-o(1)}$ time (from combinatorial 3-clique)

Use dynamic operations to efficiently enumerate the extra k-th node

Dynamic LB from k-clique hypothesis

Our result: Dynamic Range Mode requires $n^{2 / 3-o(1)}$ time (from combinatorial 4-clique)

Tight combinatorial LBs for more dynamic problems:

- Dynamic 2D Orthogonal Range Color Counting $n^{2 / 3-o(1)}$ time $(k=4)$
- Dynamic d-Dimensional Orthogonal Range Mode $n^{1-\frac{1}{2 d+1}-o(1)}$ time $(k=2 d+2)$
- Dynamic 2-Pattern Document Retrieval $n^{2 / 3-o(1)}$ time $(k=4)$

A proof template

Static LB from
 ($k-1$)-clique hypothesis

Chan et al.'14: Static Range Mode requires $n^{0.5-o(1)}$ time (from combinatorial 3-clique)

Use dynamic operations to efficiently enumerate the extra k-th node

Dynamic LB from k-clique hypothesis

Our result: Dynamic Range Mode requires $n^{2 / 3-o(1)}$ time (from combinatorial 4-clique)

Main takeaway:

(Combinatorial) \boldsymbol{k}-clique hypothesis is useful for dynamic lower bounds!
Previous dynamic LBs mostly used $k=3$ (BMM).
(exception: [Gutenberg, Vassilevska Williams, and Wein'20] reduction from 4-clique to dynamic shortest path)

Dynamic Subgraph Connectivity

- Preprocess a static undirected graph G with m edges
- Maintain a dynamic vertex subset S ("on" vertices)
- Turn on $u: S \leftarrow S \cup\{u\}$
- Turn off $u: S \leftarrow S \backslash\{u\}$
- Query u, v : are u and v connected in the induced subgraph $G[S]$?

Dynamic Subgraph Connectivity

- Preprocess a static undirected graph G with m edges
- Maintain a dynamic vertex subset S ("on" vertices)
- Turn on $u: S \leftarrow S \cup\{u\}$
- Turn off $u: S \leftarrow S \backslash\{u\}$
- Query u, v : are u and v connected in the induced subgraph $G[S]$?
- Combinatorial algorithm by Chan, Pătraşcu, and Roditty (FOCS'08) in
- $\widetilde{\boldsymbol{O}}\left(\boldsymbol{m}^{2 / 3}\right)$ update time (amortized)
- $\tilde{O}\left(m^{1 / 3}\right)$ query time
- ($\widetilde{O}\left(m^{4 / 3}\right)$ preprocessing time)
- Can the $2 / 3$ exponent be improved?

Dynamic Subgraph Connectivity

Dynamic Subgraph Connectivity

Dynamic Subgraph Connectivity

A new fine-grained conjecture

[HKNS'15]

A new fine-grained conjecture

OuMv_{k} hypothesis

- Pre-process a subset $M \subseteq\{1,2, \ldots, n\}^{k}$
- Answer n online queries:
- Given k sets $U^{(1)}, U^{(2)}, \ldots, U^{(k)} \subseteq\{1,2, \ldots, n\}$,
- Is $\left(U^{(1)} \times U^{(2)} \times \cdots \times U^{(k)}\right) \cap M$ non-empty?
- Conjecture: No $O\left(n^{1+k-\varepsilon}\right)$-time algorithm exists
- Naturally generalizes OuMv [HKNS'15] (which is OuMv_{2})

OuMv_{k} hypothesis

- Pre-process a subset $M \subseteq\{1,2, \ldots, n\}^{k}$
- Answer n online queries:
- Given k sets $U^{(1)}, U^{(2)}, \ldots, U^{(k)} \subseteq\{1,2, \ldots, n\}$,
- Is $\left(U^{(1)} \times U^{(2)} \times \cdots \times U^{(k)}\right) \cap M$ non-empty?
- Conjecture: No $O\left(n^{1+k-\varepsilon}\right)$-time algorithm exists
- Naturally generalizes OuMv [HKNS'15] (which is OuMv_{2})
- Useful for dynamic geometry problems in \mathbf{R}^{k}
- Obtain higher lower bounds as dimension k increases

Dynamic Skyline (Maximal) Points Counting

- Maintain a set P of n points in \mathbf{R}^{d}
- Insertion: $P \leftarrow P \cup\{x\}$
- Deletion: $P \leftarrow P \backslash\{x\}$
- Query: how many "skyline points" does P have?
- $x \in P$ is a "skyline point"("maximal point") iff no other $y \in P$ dominates x (i.e. $y_{i} \geq x_{i}$ for all $i=1,2, \ldots, d$)

Dynamic Skyline (Maximal) Points Counting

- Maintain a set P of n points in \mathbf{R}^{d}
- Insertion: $P \leftarrow P \cup\{x\}$
- Deletion: $P \leftarrow P \backslash\{x\}$
- Query: how many "skyline points" does P have?
- $x \in P$ is a "skyline point"("maximal point") iff no other $y \in P$ dominates x (i.e. $y_{i} \geq x_{i}$ for all $i=1,2, \ldots, d$)

Chan'03 (adapted): A semi-online algorithm in $\mathbf{R}^{2 k-1}$ with $\tilde{O}\left(n^{1-1 / k}\right)$ update time.

Semi-online: When x is inserted, we are told when x will be deleted in the future

Dynamic Skyline (Maximal) Points Counting

- Maintain a set P of n points in \mathbf{R}^{d}
- Insertion: $P \leftarrow P \cup\{x\}$
- Deletion: $P \leftarrow P \backslash\{x\}$
- Query: how many "skyline points" does P have?
- $x \in P$ is a "skyline point"("maximal point") iff no other $y \in P$ dominates x (i.e. $y_{i} \geq x_{i}$ for all $i=1,2, \ldots, d$)

Chan'03 (adapted): A semi-online algorithm in $\mathbf{R}^{2 k-1}$ with $\tilde{O}\left(n^{1-1 / k}\right)$ update time.

Semi-online: When x is inserted, we are told when x will be deleted in the future

Our result: this is tight under $\mathbf{O u M v}_{\boldsymbol{k}}$ hypothesis
(The $k=2$ case based on OMv was recently independently proved by Dallant \& lacono (2021))

Conclusion

- We used combinatorial k-clique hypothesis and OuMv_{k} hypothesis to prove tight fine-grained lower bounds for dynamic problems.

Open questions:

- Can Dynamic Subgraph Connectivity have update time better than $m^{2 / 3}$ using fast matrix multiplication?
- What is the optimal update time for Dynamic Skyline Points Counting in $\mathbf{R}^{2 k}$? (semi-online algorithms allowed)

Conclusion

- We used combinatorial k-clique hypothesis and OuMv_{k} hypothesis to prove tight fine-grained lower bounds for dynamic problems.

Open questions:

- Can Dynamic Subgraph Connectivity have update time better than $m^{2 / 3}$ using fast matrix multiplication?
- What is the optimal update time for Dynamic Skyline Points Counting in $\mathbf{R}^{2 k}$? (semi-online algorithms allowed)
- Thanks!

