
RESEARCH POSTER PRESENTATION DESIGN © 2022

www.PosterPresentations.com

- Can Dynamic Subgraph Connectivity have update time better than 𝑚2/3 using fast matrix multiplication?

- What is the optimal update time for Dynamic Skyline Points Counting in 𝐑2𝑘? (offline algorithms allowed)

- What is the optimal update time for Dynamic Skyline Points Counting in 𝐑3 without assuming semi-online model?

(Chan’20: amortized ෨𝑂 𝑛2/3 algorithm. Our LB: 𝑛1/2−𝑜(1))

Combinatorial 𝒌-clique hypothesis:

No combinatorial algorithm can detect 𝑘-

clique in an 𝑛-node graph in 𝑂 𝑛𝑘−𝜀 time,

for any 𝜀 > 0.

Fine-grained Hypotheses we use

Some Open Questions

Ce Jin and Yinzhan Xu (MIT)

Tight Dynamic Problem Lower Bounds
from Generalized BMM and OMv

Summary: We prove new tight fine-grained

lower bounds for various dynamic problems,

using combinatorial 𝑘-clique hypothesis and

(generalization of) OMv hypothesis.

Combinatorial algorithm: An informal notion.

Refers to algorithms that do not use Fast Matrix

Multiplication (e.g., Strassen’s).

OuM𝐯𝒌 hypothesis:

For constant integer 𝑘 ≥ 2, the following

problem cannot be solved in 𝑂 𝑛1+𝑘−𝜀 time,

for any 𝜀 > 0:

· Pre-process a subset 𝑀 ⊆ {1,2, … , 𝑛}𝑘

· Answer 𝑛 online queries:

Given 𝑘 sets 𝑈 1 , 𝑈 2 , … , 𝑈 𝑘 ⊆ {1,2, … , 𝑛},

Is 𝑈 1 × 𝑈 2 ×⋯× 𝑈 𝑘 ∩𝑀 non-empty?

Comb. Boolean
Matrix Mult.

𝑘-dimensional
generalization

Comb. (𝑘 + 1)-clique

Online version
(non-combinatorial)

OMv (and OuMv)

[HKNS’15]

OuM𝐯𝒌

(new)

Other results: tight combinatorial LBs for more
problems using this proof template:

· Dynamic 2D Orthogonal Range Color Counting

𝑛2/3−𝑜(1) time (from comb. 4-clique)

· Dynamic 𝑑-Dimensional Orthogonal Range Mode

𝑛1−
1

2𝑑+1
−𝑜(1) time (from comb. (2𝑑 + 2)-clique)

· Dynamic 2-Pattern Document Retrieval

𝑛2/3−𝑜(1) time (from comb. 4-clique)

…

Dynamic Subgraph Connectivity

• Preprocess a static undirected graph 𝐺 with 𝑚
edges

• Maintain a dynamic vertex subset 𝑆 (vertices

that are “on”)

• Turn on vertex 𝑢: 𝑆 ← 𝑆 ∪ {𝑢}

• Turn off vertex 𝑢: 𝑆 ← 𝑆 ∖ {𝑢}

• Query 𝑢, 𝑣: are 𝑢 and 𝑣 connected in the

induced subgraph 𝐺[𝑆] ?

Our result: No combinatorial algorithm
for Dynamic Subgraph Connectivity can

achieve 𝒎𝟐/𝟑−𝜺 update time, 𝒎𝟏−𝜺 query
time, and poly(𝑚) preprocessing time,
under comb. 4-Clique hypothesis

Our result: No combinatorial algorithm for Dynamic Range Mode can achieve 𝒏𝟐/𝟑−𝜺 query time,
𝒏𝟐/𝟑−𝜺 update time and poly(𝑛) preprocessing time, under combinatorial 4-clique hypothesis

Dynamic Range-Mode:

• Maintain an integer array 𝐴 1 , 𝐴 2 ,… , 𝐴[𝑛]

• Support Insertions and Deletions

• Query 𝑙, 𝑟: what is the most frequent element
in 𝐴 𝑙 , 𝐴 𝑙 + 1 ,… , 𝐴[𝑟]? (breaking ties
arbitrarily)

Problem Definitions

New LB for Dynamic Range Mode

New LB for Dynamic Subgraph Connectivity

Dynamic Skyline Points Counting

• Maintain a set 𝑃 of 𝑛 points in 𝐑𝑑

• Insertion: 𝑃 ← 𝑃 ∪ {𝑥}

• Deletion: 𝑃 ← 𝑃 ∖ {𝑥}

• Query: how many “skyline points” does 𝑃
have?

• 𝑥 ∈ 𝑃 is a “skyline point” iff no other 𝑦 ∈ 𝑃
dominates 𝑥 (i.e. 𝑦𝑖 ≥ 𝑥𝑖 for all 𝑖 = 1,2, … , 𝑑)

Chan’03 (adapted) gave a semi-online algorithm for Dynamic Skyline Points Counting in 𝐑2𝑘−1 with
෨𝑂 𝑛1−1/𝑘 update time.

(Semi-online model is between online and offline: When 𝑥 is inserted, we are told when 𝑥 will be deleted in the future)

Our result: this running time is tight under OuMv𝑘 hypothesis

(The 𝑘 = 2 case (in 𝐑3) based on OMv was recently
independently proved by Dallant & Iacono (2021))

Other tight LBs from OuMv𝑘 hypothesis:
· Chan’s Halfspace problem in 𝐑𝑘 (Chan’03)
· 𝑘-dimensional Erickson’s problem
· (𝑘 + 1)-dimensional Langerman’s problem
…

Static LB from
(𝑘 − 1)-clique hypothesis

Dynamic LB from
𝑘-clique hypothesis

CDLMW’14: Static Range Mode 𝑛0.5−𝑜 1

(assuming comb. 3-clique)

Our result: Dynamic Range Mode

𝑛2/3−𝑜 1 (assuming comb. 4-clique)

Use dynamic operations to efficiently
enumerate the extra 𝑘-th node

Proof:
· 4-clique on a (unbalanced) 4-partite graph with 𝑉 = 𝐴 ⊎ 𝐵 ⊎ 𝐶 ⊎ D where 𝐴 = 𝐵 = 𝑛1/3, 𝐶 = 𝑛100, 𝐷 = 𝑛2/3

requires 𝐴 𝐵 𝐶 𝐷 = 𝑛4/3 ⋅ 𝐶 time.

· 𝑁𝐷(𝑣) denotes the neighbors of 𝑣 in 𝐷, and 𝑁𝐷(𝑣) denotes the non-neighbors of 𝑣 in 𝐷.
· Build the following array, where each blue block contains a permutation of 𝐷. There are |𝐴| blue blocks on the left and |𝐵|
blue blocks on the right. (CDLMW’14)

A proof template for dynamic lower bounds:

· For 𝑐 ∈ 𝐶:
Use |𝐷| updates to build the middle 𝑁𝐷(𝑐) block

For all 𝑎𝑖 , 𝑏𝑗 ∈ 𝐴 × 𝐵 such that (𝑎𝑖 , 𝑏𝑗 , 𝑐) is a 𝐾3:

Use one query to tell whether this 𝐾3 extends to a 𝐾4
· Total #operations = 𝐶 ⋅ 𝐷 + 𝐴 ⋅ 𝐵 = 𝐶 ⋅ 𝑛2/3

If preprocessing takes < 𝑛100 time, then each operation needs 𝑛2/3 time.

Then, the frequency of the mode in this range tells whether 𝑁𝐷 𝑎𝑖 ∩ 𝑁𝐷 𝑐 ∩ 𝑁𝐷(𝑏𝑗) is non-empty.

𝑚

𝑚1/2 𝑚2/3

1

?

Query time

Update time𝑚

Ruled out by OMv
[HKNS’15]

1

New

trivial

Chan-Pătraşcu-Roditty’08𝑚1/3

𝑚1/2

𝑠

…

𝐵

…

𝐴1 𝐴2 𝐴3

𝑡

…

𝐶
Copy of 𝑬(𝑩, 𝑨) Copy of 𝑬(𝑨, 𝑪)

Proof:
· 4-clique on a (unbalanced) 4-partite graph with 𝑉 = 𝐴 ⊎ 𝐵 ⊎ 𝐶 ⊎

D where 𝐵 = 𝐶 = 𝑚1/3, 𝐴 = 𝑚2/3, 𝐷 = 𝑚100 requires
𝐴 𝐵 𝐶 𝐷 = 𝑚4/3 ⋅ 𝐷 time.

· Construct the following (static) graph with 𝑂 𝑚 edges.

· For each 𝑑 ∈ 𝐷:
Use |𝐴| updates so that 𝑎 ∈ 𝐴2 is on iff 𝑎, 𝑑 ∈ 𝐸
For 𝑏 ∈ 𝐵 such that 𝑏, 𝑑 ∈ 𝐸:

Turn on 𝑏 and turn off all 𝐵 ∖ {𝑏} (only 𝑂(1) updates)

For 𝑐 ∈ 𝐶:
Let 𝑐 be on iff 𝑐, 𝑑 , 𝑐, 𝑏 ∈ 𝐸

If 𝑠, 𝑡 are connected then return True
Return False

· #updates = 𝐷 ⋅ 𝐴 + 𝐵 ⋅ 1 + 𝐶 = 𝐷 ⋅ 𝑚2/3

· #queries = 𝐷 ⋅ 𝐵 = 𝐷 ⋅ 𝑚1/3

If preprocessing takes < 𝑚100 time, then either
update time ≥ 𝑚2/3 or query time ≥ 𝑚.

LBs for Geometry problems from OuMv_k Hypothesis

We consider OuM𝐯𝒌 hypothesis which directly generalizes OMv and OuMv [Henzinger-Krinninger-
Nanongkai-Saranurak’15] to higher dimensions. This leads to tight combinatorial LBs for various
dynamic geometric problems. Consider the following example:

