Tight Dynamic Problem Lower Bounds

from Generalized BMM and OMv
Ce Jin and Yinzhan Xu (MIT)

Summary: We prove new tight fine-grained
lower bounds for various dynamic problems,
using combinatorial k-cligue hypothesis and
(generdlization of) OMv hypothesis.

Fine-grained Hypotheses we use

Combinatorial k-clique hypothesis:

No combinatorial algorithm can detect k-
clique in an n-node graph in 0(n*~¢) time,
for any € > 0.

Combinatorial algorithm: An informal notion.
Refers to algorithms that do not use Fast Matrix
Multiplication (e.g., Strassen’s).

OuMyv,, hypothesis:

For constant integer k = 2, the following
problem cannot be solved in 0(n**~¢) time,

for any € > 0:

- Pre-process a subset M € {1,2, ..., n}*

- Answer n online queries:
Given k sets UD, @) . U™ c{1,2,..,n},
s (UD x U@ x ... x U®)) n M non-empty?

k-dimensional

" I generalization
Comb. Boolean .
[ Matrix Mult. 1 — [Comb. (k + 1)—chque}

Online version
(non-combinatorial)

[OMV (and OuI\/Iv)} E— [ OuMy;, }

(new)

[HKNS’15]

Problem Definitions

New LB for Dynamic Range Mode

Other results: tight combinatorial LBs for more
problems using this proof template:

A proof template for dynamic lower bounds:

CDLMW’14: Static Range Mode n0-5-0(1)
(assuming comb. 3-clique)

Static LB from Dynamic 2D Orthogonal Range Color Counting

(k — 1)-clique hypothesis

‘ Use dynamic operations to efficiently

_ 1
enumerate the extra k-th node n1~ za+v1 7°W time (from comb. (2d + 2)-clique)

n2/3=°(1) time (from comb. 4-clique)

Our result: Dynamic Range Mode
n2/3-0(1) (assuming comb. 4-clique)

Dynamic LB from

. . Dynamic 2-Pattern Document Retrieval
k-clique hypothesis

n2/3=°(1) time (from comb. 4-clique)

Proof:

. 4-cligue on a (unbalanced) 4-partite graph withV = AW B W C ¥ D where |A| = |B| = n1/3,|C| = n1°,|D| = n?/3
requires |A||B||C||D| = n*/3 - |C| time.

- Np(v) denotes the neighbors of v in D, and Ny (v) denotes the non-neighbors of v in D.

- Build the following array, where each blue block contains a permutation of D. There are |A| blue blocks on the left and |B]|

blue blocks on the right. (CDLMW’14)
Then, the frequency of the mode in this range tells whether N (a;) N Np(c) N Np(b;) is non-empty.

-Forc € C: ~
Use |D| updates to build the middle Np(c) block Noby) | 7o
For all (ai, bj) € A X B such that (a;, bj, ¢) is a K3:
P, Pan le ij

Use one query to tell whether this K5 extends to a K,
. Total #toperations = |C| - (|D| + |A| - |B]) = |C| - n?/3
If preprocessing takes < n1%° time, then each operation needs n?/3 time.

Dynamic Range-Mode:
* Maintain an infeger array Al[1], A[2], ...
» Support Insertions and Deletions

* Query [, r: what is the most frequent element
in A[l],A[l + 1], ..., A[r]¢ (breaking ties
arbitrarily)

, Aln]

Dynamic Subgraph Connectivity

* Preprocess a static undirected graph ¢ with m
edges

* Maintain a dynamic vertex subset S (vertices
that are “on”)

* fJurn on vertex u: S « S U {u}
e Turn off vertex u: § « S\ {u}

* Query u,v: are u and v connected in the
induced subgraph G[S] ¢

trivial

m Our result: No combinatorial algorithm
for Dynamic Subgraph Connectivity can

achieve m?/3~¢ ypdate time, m1~¢ query

time, and poly(m) preprocessing time,

under comb. 4-Cligue hypothesis

m1/2
ml1/3
L O—0—C
1 O, O—O-O\ C
Update time A =00 9
(S G
Proof: C O—0O——C @
- 4-cligue on a (unbalanced) 4-partite graph withV =AwB W C W
D where |B| = |C| = mY/3,|A| = m?/3,|D| = m9° requires ® ()
|A||B||C||D| = m*/3 - |D| time.
- Construct the following (static) graph with O(m) edges. B ‘ ‘ C

- Foreachd € D: Copy of E(B,A)
Use |A| updates sothata € A, isoniff (a,d) € E 1
For b € B such that (b,d) € E:

Turn on b and turn off all B \ {b} (only 0(1) updates)
Forc € C:
Let ¢ be on iff (¢,d), (c,b) € E
If s, t are connected then return True
Return False

AZ A3 Copy of E(4, C)

-#updates = [D| - (|A| + |B] - (1 +|C|)) = |D| - m?/3
. #queries = |D| - |B| = |D| - m1/3

If preprocessing takes < m1%° time, then either
update time > m?/3 or query time > m.

Dynamic Skyline Points Counting
» Maintain a set P of n points in R?

* Insertion: P « P U {x}

* Deletion: P « P\ {x}

« Query: how many “skyline points” does P
havee

*x € P is a “skyline point” iff no other y € P
dominates x (i.e.y; = x; foralli = 1,2, ...,d)

LBs for Geometry problems from OuMv_k Hypothesis

We consider OuMyvy, hypothesis which directly generalizes OMv and OuMv [Henzinger-Krinninger-
Nanongkai-Saranurak’15] to higher dimensions. This leads to tight combinatorial LBs for various
dynamic geometric problems. Consider the following example:

- Dynamic d-Dimensional Orthogonal Range Mode

Chan’03 (adapted) gave a semi-online algorithm for Dynamic Skyline Points Counting in R%*~1 with
0 (n1~1/%) update time.

(Semi-online model is between online and offline: When x is inserted, we are told when x will be deleted in the future)

Our result: this running time is tight under OuMv,, hypothesis

Other tight LBs from OuMv,, hypothesis:

. Chan’s Halfspace problem in R¥ (Chan’03)
- k-dimensional Erickson’s problem

- (k + 1)-dimensional Langerman’s problem

(The k = 2 case (in R3) based on OMv was recently
independently proved by Dallant & lacono (2021) )

Some Open Questions

- Can Dynamic Subgraph Connectivity have update time better than m?/3 using fast matrix multiplication?
- What is the optimal update time for Dynamic Skyline Points Counting in R?*2 (offline algorithms allowed)

- What is the optimal update time for Dynamic Skyline Points Counting in R? without assuming semi-online model?

(Chan'20: amortized 0(n?/3) algorithm. Our LB: n1/270W)



