Tight Dynamic Problem Lower Bounds from Generalized BMM and OMv Ce Jin and Yinzhan Xu (MIT)

Summary: We prove new tight fine-grained lower bounds for various dynamic problems, using combinatorial k-clique hypothesis and (generalization of) OMv hypothesis.

Fine-grained Hypotheses we use

Combinatorial k-clique hypothesis:

No <u>combinatorial</u> algorithm can detect kclique in an *n*-node graph in $O(n^{k-\varepsilon})$ time, for any $\varepsilon > 0$.

Combinatorial algorithm: An informal notion.

New LB for Dynamic Range Mode

Our result: No combinatorial algorithm for *Dynamic Range Mode* can achieve $n^{2/3-\varepsilon}$ query time, $n^{2/3-\varepsilon}$ update time and poly(n) preprocessing time, under combinatorial 4-clique hypothesis

A proof template for dynamic lower bounds:		Other results: tight combinatorial LBs for more problems using this proof template:
Static LB from $(k-1)$ -clique hypothesis	CDLMW'14: <i>Static</i> Range Mode $n^{0.5-o(1)}$ (assuming comb. 3-clique)	Dynamic 2D Orthogonal Range Color Counting $n^{2/3-o(1)}$ time (from comb. 4-clique)
Use dynamic operations to efficiently enumerate the extra <i>k</i> -th node		• Dynamic <i>d</i> -Dimensional Orthogonal Range Mode $n^{1-\frac{1}{2d+1}-o(1)}$ time (from comb. (2 <i>d</i> + 2)-clique)
Dynamic LB from <i>k</i> -clique hypothesis	Our result : <i>Dynamic</i> Range Mode $n^{2/3-o(1)}$ (assuming comb. 4-clique)	Dynamic 2-Pattern Document Retrieval $n^{2/3-o(1)}$ time (from comb. 4-clique)

Refers to algorithms that do not use Fast Matrix Multiplication (e.g., Strassen's).

$OuMv_k$ hypothesis:

For constant integer $k \ge 2$, the following problem cannot be solved in $O(n^{1+k-\varepsilon})$ time, for any $\varepsilon > 0$:

- · Pre-process a subset $M \subseteq \{1, 2, ..., n\}^k$
- \cdot Answer *n* <u>online</u> queries:

Given k sets $U^{(1)}, U^{(2)}, \dots, U^{(k)} \subseteq \{1, 2, \dots, n\},\$ Is $(U^{(1)} \times U^{(2)} \times \cdots \times U^{(k)}) \cap M$ non-empty?

Proof: · 4-clique on a (unbalanced) 4-partite graph with $V = A \uplus B \uplus C \Downarrow D$ where $|A| = |B| = n^{1/3}$, $|C| = n^{100}$, $|D| = n^{2/3}$ requires $|A||B||C||D| = n^{4/3} \cdot |C|$ time.

 $\cdot N_D(v)$ denotes the neighbors of v in D, and $\overline{N_D(v)}$ denotes the non-neighbors of v in D.

· Build the following array, where each blue block contains a permutation of D. There are |A| blue blocks on the left and |B|blue blocks on the right. (CDLMW'14)

Then, the frequency of the mode in this range tells whether $N_D(a_i) \cap N_D(c) \cap N_D(b_i)$ is non-empty.

 \cdot For $c \in C$:

Use |D| updates to build the middle $N_D(c)$ block ...

For all $(a_i, b_i) \in A \times B$ such that (a_i, b_i, c) is a K_3 : Use one query to tell whether this K_3 extends to a $K_4 = P_{a_i}$

 \cdot Total #operations = $|C| \cdot (|D| + |A| \cdot |B|) = |C| \cdot n^{2/3}$ If preprocessing takes $< n^{100}$ time, then each operation needs $n^{2/3}$ time.

New LB for Dynamic Subgraph Connectivity

Our result: No combinatorial algorithm for *Dynamic Subgraph Connectivity* can achieve $m^{2/3-\varepsilon}$ update time, $m^{1-\varepsilon}$ query time, and poly(m) preprocessing time, under comb. 4-Clique hypothesis

[HKNS'15]

Problem Definitions

Dynamic Range-Mode:

- Maintain an integer array $A[1], A[2], \dots, A[n]$
- Support Insertions and Deletions
- Query *l*, *r*: what is the most frequent element in $A[l], A[l+1], \dots, A[r]$? (breaking ties) arbitrarily)

Dynamic Subgraph Connectivity

- Preprocess a static undirected graph G with medges
- Maintain a dynamic vertex subset S (vertices) that are "on")
- Turn on vertex $u: S \leftarrow S \cup \{u\}$
- Turn off vertex $u: S \leftarrow S \setminus \{u\}$
- Query u, v: are u and v connected in the induced subgraph G[S]?

Dynamic Skyline Points Counting • Maintain a set P of n points in \mathbf{R}^d

Proof:

· 4-clique on a (unbalanced) 4-partite graph with $V = A \uplus B \uplus C \Downarrow$ D where $|B| = |C| = m^{1/3}$, $|A| = m^{2/3}$, $|D| = m^{100}$ requires $|A||B||C||D| = m^{4/3} \cdot |D|$ time.

· Construct the following (static) graph with O(m) edges. · For each $d \in D$:

```
Use |A| updates so that a \in A_2 is on iff (a, d) \in E
For b \in B such that (b, d) \in E:
```

Turn on b and turn off all $B \setminus \{b\}$ (only O(1) updates) For $c \in C$:

```
Let c be on iff (c, d), (c, b) \in E
```

```
If s, t are connected then return True
```

Return False

 \cdot #updates = $|D| \cdot (|A| + |B| \cdot (1 + |C|)) = |D| \cdot m^{2/3}$ \cdot #queries = $|D| \cdot |B| = |D| \cdot m^{1/3}$ If preprocessing takes $< m^{100}$ time, then either update time $\geq m^{2/3}$ or query time $\geq m$.

LBs for Geometry problems from OuMv_k Hypothesis

We consider **OuMv**, hypothesis which <u>directly generalizes OMv and OuMv</u> [Henzinger-Krinninger-Nanongkai-Saranurak'15] to higher dimensions. This leads to tight combinatorial LBs for various dynamic geometric problems. Consider the following example:

Chan'03 (adapted) gave a semi-online algorithm for Dynamic Skyline Points Counting in \mathbf{R}^{2k-1} with $\tilde{O}(n^{1-1/k})$ update time.

...

- Insertion: $P \leftarrow P \cup \{x\}$
- Deletion: $P \leftarrow P \setminus \{x\}$
- Query: how many "skyline points" does P have?
- $x \in P$ is a "skyline point" iff no other $y \in P$ dominates x (i.e. $y_i \ge x_i$ for all i = 1, 2, ..., d)

(Semi-online model is between online and offline: When x is inserted, we are told when x will be deleted in the future) **Our result**: this running time is <u>tight</u> under $OuMv_k$ hypothesis

(The k = 2 case (in \mathbb{R}^3) based on OMv was recently independently proved by Dallant & Iacono (2021))

Other <u>tight</u> LBs from $OuMv_k$ hypothesis: · Chan's Halfspace problem in \mathbf{R}^{k} (Chan'03) $\cdot k$ -dimensional Erickson's problem $\cdot (k + 1)$ -dimensional Langerman's problem

Some Open Questions

- Can <u>Dynamic Subgraph Connectivity</u> have update time better than $m^{2/3}$ using fast matrix multiplication?
- What is the optimal update time for <u>Dynamic Skyline Points Counting in \mathbb{R}^{2k} ? (offline algorithms allowed)</u>
- What is the optimal update time for <u>Dynamic Skyline Points Counting in \mathbf{R}^3 without assuming semi-online model?</u> (Chan'20: amortized $\tilde{O}(n^{2/3})$ algorithm. Our LB: $n^{1/2-o(1)}$)