Simulating Random Walks on Graphs in the Streaming Model

Ce Jin

Tsinghua University
ITCS 2019

Problem Definition

Insertion-only graph streaming model
Let G be the (directed or undirected) input graph with n vertices.
The edges of G come as an input stream $\left(e_{1}, e_{2}, \ldots, e_{m}\right)$.
A streaming algorithm must read the edges one by one in this order.

Problem Definition

Insertion-only graph streaming model

Let G be the (directed or undirected) input graph with n vertices.
The edges of G come as an input stream $\left(e_{1}, e_{2}, \ldots, e_{m}\right)$.
A streaming algorithm must read the edges one by one in this order.

Random walk on graph
A sequence of vertices $\left(v_{0}, v_{1}, \ldots, v_{t}\right)$ starting from v_{0}. For $i=1,2, \ldots, t,\left(v_{i-1}, v_{i}\right)$ is a uniform random edge drawn from the edges adjacent to v_{i-1}.

Problem Definition

Insertion-only graph streaming model

Let G be the (directed or undirected) input graph with n vertices.
The edges of G come as an input stream $\left(e_{1}, e_{2}, \ldots, e_{m}\right)$.
A streaming algorithm must read the edges one by one in this order.

Random walk on graph
A sequence of vertices $\left(v_{0}, v_{1}, \ldots, v_{t}\right)$ starting from v_{0}. For $i=1,2, \ldots, t,\left(v_{i-1}, v_{i}\right)$ is a uniform random edge drawn from the edges adjacent to v_{i-1}.

Our problem: Simulating a t-step random walk
A starting vertex v_{0} is given at the end of the input stream.
The streaming algorithm outputs a random sequence ($v_{0}, v_{1}, \ldots, v_{t}$).
The ℓ_{1} distance between the output distribution and the distribution of t-step random walks is less than ε.

A simple algorithm

Reservoir Sampling

Given a stream of elements as input, one can uniformly sample m elements from them using $O(m)$ space.

A simple algorithm

Reservoir Sampling

Given a stream of elements as input, one can uniformly sample m elements from them using $O(m)$ space.

For every vertex u, store t independent samples $v_{u, 1}, v_{u, 2}, \ldots, v_{u, t}$ of u 's neighbors.

A simple algorithm

Reservoir Sampling

Given a stream of elements as input, one can uniformly sample m elements from them using $O(m)$ space.

For every vertex u, store t independent samples $v_{u, 1}, v_{u, 2}, \ldots, v_{u, t}$ of u 's neighbors.
Perform a t-step random walk using these samples. After visiting u for the i-th time, go to $v_{u, i}$ in the next step.

A simple algorithm

Reservoir Sampling

Given a stream of elements as input, one can uniformly sample m elements from them using $O(m)$ space.

For every vertex u, store t independent samples $v_{u, 1}, v_{u, 2}, \ldots, v_{u, t}$ of u 's neighbors.
Perform a t-step random walk using these samples. After visiting u for the i-th time, go to $v_{u, i}$ in the next step.
$O(n t)$ words of space. Perfect simulation $(\varepsilon=0)$

A simple algorithm

Reservoir Sampling

Given a stream of elements as input, one can uniformly sample m elements from them using $O(m)$ space.

For every vertex u, store t independent samples $v_{u, 1}, v_{u, 2}, \ldots, v_{u, t}$ of u 's neighbors.
Perform a t-step random walk using these samples. After visiting u for the i-th time, go to $v_{u, i}$ in the next step.
$O(n t)$ words of space. Perfect simulation $(\varepsilon=0)$

Main questions

Can we do better (when small error $\varepsilon>0$ is allowed)?
Can we prove space lower bounds?

Related work

In the multi-pass streaming model: Algorithm using $O(n)$ space and $O(\sqrt{t})$ passes. [Das Sarma, Gollapudi, Panigrahy, 2011]

Related work

In the multi-pass streaming model: Algorithm using $O(n)$ space and $O(\sqrt{t})$ passes. [Das Sarma, Gollapudi, Panigrahy, 2011] Applications to estimating the page-rank vector, mixing time and conductance of graphs.

Related work

In the multi-pass streaming model: Algorithm using $O(n)$ space and $O(\sqrt{t})$ passes. [Das Sarma, Gollapudi, Panigrahy, 2011] Applications to estimating the page-rank vector, mixing time and conductance of graphs.

Our study: What can we do in the single-pass streaming model?

Results

- On a directed graph, simulating a t-step random walk with error $\varepsilon \leq 1 / 3$ requires $\Omega(n t \log (n / t))$ bits of memory. (for $t \leq n / 2$)

Results

- On a directed graph, simulating a t-step random walk with error $\varepsilon \leq 1 / 3$ requires $\Omega(n t \log (n / t))$ bits of memory. (for $t \leq n / 2$)
- On an undirected graph, simulating a t-step random walk with error $\varepsilon \leq 1 / 3$ requires $\Omega(n \sqrt{t})$ bits of memory. (for $t=O\left(n^{2}\right)$)

Results

- On a directed graph, simulating a t-step random walk with error $\varepsilon \leq 1 / 3$ requires $\Omega(n t \log (n / t))$ bits of memory. (for $t \leq n / 2$)
- On an undirected graph, simulating a t-step random walk with error $\varepsilon \leq 1 / 3$ requires $\Omega(n \sqrt{t})$ bits of memory. (for $t=O\left(n^{2}\right)$)
- On an undirected graph, we can simulate a t-step random walk using $O(n \sqrt{t})$ words of memory, with error $\varepsilon \leq 2^{-\Omega(\sqrt{t})}$.

Results

- On a directed graph, simulating a t-step random walk with error $\varepsilon \leq 1 / 3$ requires $\Omega(n t \log (n / t))$ bits of memory. (for $t \leq n / 2$)
- On an undirected graph, simulating a t-step random walk with error $\varepsilon \leq 1 / 3$ requires $\Omega(n \sqrt{t})$ bits of memory. (for $t=O\left(n^{2}\right)$)
- On an undirected graph, we can simulate a t-step random walk using $O(n \sqrt{t})$ words of memory, with error $\varepsilon \leq 2^{-\Omega(\sqrt{t})}$.
- For smaller ε, we use $O\left(n\left(\sqrt{t}+\frac{\log \varepsilon^{-1}}{\log \log \varepsilon^{-1}}\right)\right)$ words of memory.

Results

- On a directed graph, simulating a t-step random walk with error $\varepsilon \leq 1 / 3$ requires $\Omega(n t \log (n / t))$ bits of memory. (for $t \leq n / 2$)
- On an undirected graph, simulating a t-step random walk with error $\varepsilon \leq 1 / 3$ requires $\Omega(n \sqrt{t})$ bits of memory. (for $t=O\left(n^{2}\right)$)
- On an undirected graph, we can simulate a t-step random walk using $O(n \sqrt{t})$ words of memory, with error $\varepsilon \leq 2^{-\Omega(\sqrt{t})}$.
- For smaller ε, we use $O\left(n\left(\sqrt{t}+\frac{\log \varepsilon^{-1}}{\log \log \varepsilon^{-1}}\right)\right)$ words of memory.

Results

- On a directed graph, simulating a t-step random walk with error $\varepsilon \leq 1 / 3$ requires $\Omega(n t \log (n / t))$ bits of memory. (for $t \leq n / 2$)
- On an undirected graph, simulating a t-step random walk with error $\varepsilon \leq 1 / 3$ requires $\Omega(n \sqrt{t})$ bits of memory. (for $t=O\left(n^{2}\right)$)
- On an undirected graph, we can simulate a t-step random walk using $O(n \sqrt{t})$ words of memory, with error $\varepsilon \leq 2^{-\Omega(\sqrt{t})}$.
- For smaller ε, we use $O\left(n\left(\sqrt{t}+\frac{\log \varepsilon^{-1}}{\log \log \varepsilon^{-1}}\right)\right)$ words of memory.

Nearly matching space lower bounds \& upper bounds for both directed/undirected settings!

Results

- On a directed graph, simulating a t-step random walk with error $\varepsilon \leq 1 / 3$ requires $\Omega(n t \log (n / t))$ bits of memory. (for $t \leq n / 2$)
- On an undirected graph, simulating a t-step random walk with error $\varepsilon \leq 1 / 3$ requires $\Omega(n \sqrt{t})$ bits of memory. (for $t=O\left(n^{2}\right)$)
- On an undirected graph, we can simulate a t-step random walk using $O(n \sqrt{t})$ words of memory, with error $\varepsilon \leq 2^{-\Omega(\sqrt{t})}$.
- For smaller ε, we use $O\left(n\left(\sqrt{t}+\frac{\log \varepsilon^{-1}}{\log \log \varepsilon^{-1}}\right)\right)$ words of memory.

Nearly matching space lower bounds \& upper bounds for both directed/undirected settings!

Space lower bound for undirected graphs

We show a reduction from the INDEX problem.

INDEX problem

Alice has an n-bit vector $X \in\{0,1\}^{n}$ and Bob has an index $i \in[n]$. Alice sends a message to Bob, and then Bob should output the bit X_{i}.

INDEX lower bound [Miltersen, Nisan, Safra, Wigderson, 1998]
For any constant $1 / 2<c \leq 1$, solving the INDEX problem with success probability c requires sending $\Omega(n)$ bits.

Space lower bound for undirected graphs

We show a reduction from the INDEX problem.

INDEX problem

Alice has an n-bit vector $X \in\{0,1\}^{n}$ and Bob has an index $i \in[n]$. Alice sends a message to Bob, and then Bob should output the bit X_{i}.

INDEX lower bound [Miltersen, Nisan, Safra, Wigderson, 1998]
For any constant $1 / 2<c \leq 1$, solving the INDEX problem with success probability c requires sending $\Omega(n)$ bits.

INDEX protocol

Alice creates a graph consisting of $\frac{n}{\sqrt{t}}$ disjoint groups. Each group is a bipartite graph with \sqrt{t} vertices on each side.

INDEX protocol

Alice creates a graph consisting of $\frac{n}{\sqrt{t}}$ disjoint groups. Each group is a bipartite graph with \sqrt{t} vertices on each side.
By inserting edges into every groups, she can encode $\frac{n}{\sqrt{t}} \times \sqrt{t} \times \sqrt{t}=n \sqrt{t}$ bits of information.

INDEX protocol

Alice creates a graph consisting of $\frac{n}{\sqrt{t}}$ disjoint groups. Each group is a bipartite graph with \sqrt{t} vertices on each side.
By inserting edges into every groups, she can encode $\frac{n}{\sqrt{t}} \times \sqrt{t} \times \sqrt{t}=n \sqrt{t}$ bits of information.

Bob wants to see whether edge (a, b) exists.

INDEX protocol

Alice creates a graph consisting of $\frac{n}{\sqrt{t}}$ disjoint groups. Each group is a bipartite graph with \sqrt{t} vertices on each side.
By inserting edges into every groups, she can encode $\frac{n}{\sqrt{t}} \times \sqrt{t} \times \sqrt{t}=n \sqrt{t}$ bits of information.

Bob wants to see whether edge (a, b) exists.
Alice sends the memory of the streaming algorithm to Bob. Bob adds \sqrt{t} vertices and connect each of them to every vertex in a's side.

Space lower bound for undirected graphs

Bob wants to see whether edge (a, b) exists. He adds \sqrt{t} vertices and connects each of them to every vertex in a's side.

- Starting from a Bob's vertex, go to a w.p. $\frac{1}{\sqrt{t}}$, then go to b w.p. $\Theta\left(\frac{1}{\sqrt{t}}\right)$

Space lower bound for undirected graphs

Bob wants to see whether edge (a, b) exists. He adds \sqrt{t} vertices and connects each of them to every vertex in a's side.

- Starting from a Bob's vertex, go to a w.p. $\frac{1}{\sqrt{t}}$, then go to b w.p. $\Theta\left(\frac{1}{\sqrt{t}}\right)$
- visit a Bob's vertex every $O(1)$ steps with good probability

Space lower bound for undirected graphs

Bob wants to see whether edge (a, b) exists. He adds \sqrt{t} vertices and connects each of them to every vertex in a's side.

- Starting from a Bob's vertex, go to a w.p. $\frac{1}{\sqrt{t}}$, then go to b w.p. $\Theta\left(\frac{1}{\sqrt{t}}\right)$
- visit a Bob's vertex every $O(1)$ steps with good probability

Space lower bound for undirected graphs

Bob wants to see whether edge (a, b) exists. He adds \sqrt{t} vertices and connects each of them to every vertex in a's side.

- Starting from a Bob's vertex, go to a w.p. $\frac{1}{\sqrt{t}}$, then go to b w.p. $\Theta\left(\frac{1}{\sqrt{t}}\right)$
- visit a Bob's vertex every $O(1)$ steps with good probability

Edge (a, b) is likely to be visited (if exists) after $O(t)$ steps. So bob can tell whether (a, b) exists by simulating the generated $O(t)$-step random walk.

Space lower bound for undirected graphs

Bob wants to see whether edge (a, b) exists. He adds \sqrt{t} vertices and connects each of them to every vertex in a's side.

- Starting from a Bob's vertex, go to a w.p. $\frac{1}{\sqrt{t}}$, then go to b w.p. $\Theta\left(\frac{1}{\sqrt{t}}\right)$
- visit a Bob's vertex every $O(1)$ steps with good probability

Edge (a, b) is likely to be visited (if exists) after $O(t)$ steps. So bob can tell whether (a, b) exists by simulating the generated $O(t)$-step random walk.
By INDEX lower bound, we need $\Omega(n \sqrt{t})$ bits of space.

Algorithm for undirected graphs

(For now we assume there are no multiple edges or self-loops)

- Small vertices: degree $\leq C$
- Big vertices: degree $>C$
for some parameter $C \approx \sqrt{t}$.

Algorithm for undirected graphs

(For now we assume there are no multiple edges or self-loops)

- Small vertices: degree $\leq C$
- Big vertices: degree $>C$
for some parameter $C \approx \sqrt{t}$.
For every small vertex u : store all neighbors of u.

Algorithm for undirected graphs

(For now we assume there are no multiple edges or self-loops)

- Small vertices: degree $\leq C$
- Big vertices: degree $>C$
for some parameter $C \approx \sqrt{t}$.
For every small vertex u : store all neighbors of u.
For every big vertex u : store C independent samples of u 's big neighbors.

Algorithm for undirected graphs

(For now we assume there are no multiple edges or self-loops)

- Small vertices: degree $\leq C$
- Big vertices: degree $>C$
for some parameter $C \approx \sqrt{t}$.
For every small vertex u : store all neighbors of u.
For every big vertex u : store C independent samples of u 's big neighbors. Total space: $O(n \sqrt{t})$ words.

Algorithm for undirected graphs using $O(n \sqrt{t})$ space

For every small vertex u : store all neighbors of u.
For every big vertex u : store C independent samples of u 's big neighbors.
How to simulate a random walk? (Suppose we are now at vertex u)

Algorithm for undirected graphs using $O(n \sqrt{t})$ space

For every small vertex u : store all neighbors of u.
For every big vertex u : store C independent samples of u 's big neighbors.

How to simulate a random walk? (Suppose we are now at vertex u)

- If u is small: simply pick a random neighbor v as the next vertex

Algorithm for undirected graphs using $O(n \sqrt{t})$ space

For every small vertex u : store all neighbors of u.
For every big vertex u : store C independent samples of u 's big neighbors.

How to simulate a random walk? (Suppose we are now at vertex u)

- If u is small: simply pick a random neighbor v as the next vertex
- If u is big: flip a biased coin to decide if the next vertex will be big/small

Algorithm for undirected graphs using $O(n \sqrt{t})$ space

For every small vertex u : store all neighbors of u.
For every big vertex u : store C independent samples of u 's big neighbors.

How to simulate a random walk? (Suppose we are now at vertex u)

- If u is small: simply pick a random neighbor v as the next vertex
- If u is big: flip a biased coin to decide if the next vertex will be big/small
- next vertex is small: pick a random small neighbor (we know all of them!)

Algorithm for undirected graphs using $O(n \sqrt{t})$ space

For every small vertex u : store all neighbors of u.
For every big vertex u : store C independent samples of u 's big neighbors.

How to simulate a random walk? (Suppose we are now at vertex u)

- If u is small: simply pick a random neighbor v as the next vertex
- If u is big: flip a biased coin to decide if the next vertex will be big/small
- next vertex is small: pick a random small neighbor (we know all of them!)
- next vertex is big: have to consume a sample of u 's big neighbor. (FAIL if all have been used)

Algorithm for undirected graphs using $O(n \sqrt{t})$ space

For every small vertex u : store all neighbors of u.
For every big vertex u : store C independent samples of u 's big neighbors.

How to simulate a random walk? (Suppose we are now at vertex u)

- If u is small: simply pick a random neighbor v as the next vertex
- If u is big: flip a biased coin to decide if the next vertex will be big/small
- next vertex is small: pick a random small neighbor (we know all of them!)
- next vertex is big: have to consume a sample of u 's big neighbor. (FAIL if all have been used)

Algorithm for undirected graphs using $O(n \sqrt{t})$ space

For every small vertex u : store all neighbors of u.
For every big vertex u : store C independent samples of u 's big neighbors.

How to simulate a random walk? (Suppose we are now at vertex u)

- If u is small: simply pick a random neighbor v as the next vertex
- If u is big: flip a biased coin to decide if the next vertex will be big/small
- next vertex is small: pick a random small neighbor (we know all of them!)
- next vertex is big: have to consume a sample of u 's big neighbor. (FAIL if all have been used)

If we can make $\operatorname{Pr}[F A I L] \leq \varepsilon$, then our output distribution will be (2 2)-close.

Analysis of failure probability

We say a vertex u fails, if the failure happens when we are at u.

Analysis of failure probability

We say a vertex u fails, if the failure happens when we are at u. $\operatorname{Pr}[$ FAIL $] \leq \sum_{u} \operatorname{Pr}[u$ fails $]$

Analysis of failure probability

We say a vertex u fails, if the failure happens when we are at u. $\operatorname{Pr}[$ FAIL $] \leq \sum_{u} \operatorname{Pr}[u$ fails $]$ u fails only if the number of " $u \rightarrow$ Big" steps exceeds C.

Analysis of failure probability

We say a vertex u fails, if the failure happens when we are at u. $\operatorname{Pr}[$ FAIL $] \leq \sum_{u} \operatorname{Pr}[u$ fails $]$ u fails only if the number of " $u \rightarrow$ Big" steps exceeds C.

$$
\operatorname{Pr}[u \text { fails }] \leq \sum_{\text {walk } w} \operatorname{Pr}[w] \cdot 1[w \text { has more than } C " u \rightarrow \text { Big" steps }]
$$

where $\operatorname{Pr}\left[\left(v_{0}, v_{1}, \ldots, v_{t}\right)\right]=\frac{1}{d\left(v_{0}\right) d\left(v_{1}\right) \ldots d\left(v_{t-1}\right)}$

$$
=\operatorname{Pr}\left[\left(v_{t}, \ldots, v_{0}\right)\right] \frac{d\left(v_{t}\right)}{d\left(v_{0}\right)}
$$

Analysis of failure probability

We say a vertex u fails, if the failure happens when we are at u. $\operatorname{Pr}[$ FAIL $] \leq \sum_{u} \operatorname{Pr}[u$ fails $]$
u fails only if the number of " $u \rightarrow$ Big" steps exceeds C.

$$
\operatorname{Pr}[u \text { fails }] \leq \sum_{\text {walk } w} \operatorname{Pr}[w] \cdot 1[w \text { has more than } C " u \rightarrow \text { Big" steps }]
$$

where $\operatorname{Pr}\left[\left(v_{0}, v_{1}, \ldots, v_{t}\right)\right]=\frac{1}{d\left(v_{0}\right) d\left(v_{1}\right) \ldots d\left(v_{t-1}\right)}$

$$
=\operatorname{Pr}\left[\left(v_{t}, \ldots, v_{0}\right)\right] \frac{d\left(v_{t}\right)}{d\left(v_{0}\right)}
$$

The reversed walk $\left(v_{t}, \ldots, v_{0}\right)$ is still a walk (since the graph is undirected).

Analysis of failure probability

We say a vertex u fails, if the failure happens when we are at u. $\operatorname{Pr}[$ FAIL $] \leq \sum_{u} \operatorname{Pr}[u$ fails $]$
u fails only if the number of " $u \rightarrow$ Big" steps exceeds C.

$$
\operatorname{Pr}[u \text { fails }] \leq \sum_{\text {walk } w} \operatorname{Pr}[w] \cdot 1[w \text { has more than } C " u \rightarrow \text { Big" steps }]
$$

where $\operatorname{Pr}\left[\left(v_{0}, v_{1}, \ldots, v_{t}\right)\right]=\frac{1}{d\left(v_{0}\right) d\left(v_{1}\right) \ldots d\left(v_{t-1}\right)}$

$$
=\operatorname{Pr}\left[\left(v_{t}, \ldots, v_{0}\right)\right] \frac{d\left(v_{t}\right)}{d\left(v_{0}\right)}
$$

The reversed walk $\left(v_{t}, \ldots, v_{0}\right)$ is still a walk (since the graph is undirected).
" $u \rightarrow$ Big" steps becomes "Big $\rightarrow u$ " steps!

Algorithm for undirected graphs

Hence

$$
\operatorname{Pr}[u \text { fails }] \leq n \sum_{\text {walk } w} \operatorname{Pr}[w] \cdot 1[w \text { has more than } C \text { " } \operatorname{Big} \rightarrow u \text { " steps }]
$$

Algorithm for undirected graphs

Hence

$$
\operatorname{Pr}[u \text { fails }] \leq n \sum_{\text {walk } w} \operatorname{Pr}[w] \cdot 1[w \text { has more than } C \text { " } \operatorname{Big} \rightarrow u \text { " steps }]
$$

Big vertex has degree $>C . \operatorname{Pr}\left[v_{i} \rightarrow v_{i+1}\right.$ is a " $\operatorname{Big} \rightarrow u$ " step $\left.\mid v_{i}\right]<1 / C$ In t steps, "Big $\rightarrow u$ " happens $<t / C$ times in expectation (and it has concentration!)
Choosing $C=O\left(\sqrt{t} \log n \varepsilon^{-1}\right)$ makes $\operatorname{Pr}[$ FAIL $] \leq \sum_{u} \operatorname{Pr}[u$ fails $] \ll \varepsilon$.
(we can improve the log-factor using more careful analysis..)

Dealing with multiple edges

When there are multiple edges,

$$
\operatorname{Pr}\left[v_{i} \rightarrow v_{i+1} \text { is a " } \mathrm{Big} \rightarrow u \text { " step } \mid v_{i}\right]<1 / C
$$

might not hold. (example: most of v 's adjacent edges are connecting u)

Fix: For each u, we use heavy-hitter algorithms to find those neighbors v such that $\operatorname{Pr}\left[v_{i}=v \mid v_{i-1}=u\right]>1 / C$.

Thank you!

