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Problem Definition

Insertion-only graph streaming model

Let G be the (directed or undirected) input graph with n vertices.
The edges of G come as an input stream (e1, e2, . . . , em).
A streaming algorithm must read the edges one by one in this order.

Random walk on graph

A sequence of vertices (v0, v1, . . . , vt) starting from v0.
For i = 1, 2, . . . , t, (vi−1, vi ) is a uniform random edge drawn from the
edges adjacent to vi−1.

Our problem: Simulating a t-step random walk

A starting vertex v0 is given at the end of the input stream.
The streaming algorithm outputs a random sequence (v0, v1, . . . , vt).
The ℓ1 distance between the output distribution and the distribution of
t-step random walks is less than ε.
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A simple algorithm

Reservoir Sampling

Given a stream of elements as input, one can uniformly sample m elements
from them using O(m) space.

For every vertex u, store t independent samples vu,1, vu,2, . . . , vu,t of u’s
neighbors.
Perform a t-step random walk using these samples. After visiting u for the
i-th time, go to vu,i in the next step.
O(nt) words of space. Perfect simulation (ε = 0)

Main questions

Can we do better (when small error ε > 0 is allowed)?
Can we prove space lower bounds?
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Related work

In the multi-pass streaming model: Algorithm using O(n) space and
O(

√
t) passes. [Das Sarma, Gollapudi, Panigrahy, 2011]

Applications to estimating the page-rank vector, mixing time and
conductance of graphs.

Our study: What can we do in the single-pass streaming model?

Ce Jin (Tsinghua University) ITCS 2019 4 / 14
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Results

On a directed graph, simulating a t-step random walk with error
ε ≤ 1/3 requires Ω(nt log(n/t)) bits of memory. (for t ≤ n/2)

On an undirected graph, simulating a t-step random walk with error
ε ≤ 1/3 requires Ω(n

√
t) bits of memory. (for t = O(n2))

On an undirected graph, we can simulate a t-step random walk using
O(n

√
t) words of memory, with error ε ≤ 2−Ω(

√
t).

▶ For smaller ε, we use O(n(
√
t + log ε−1

log log ε−1 )) words of memory.

Nearly matching space lower bounds & upper bounds for both
directed/undirected settings!
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Space lower bound for undirected graphs

We show a reduction from the INDEX problem.

INDEX problem

Alice has an n-bit vector X ∈ {0, 1}n and Bob has an index i ∈ [n]. Alice
sends a message to Bob, and then Bob should output the bit Xi .

INDEX lower bound [Miltersen, Nisan, Safra, Wigderson, 1998]

For any constant 1/2 < c ≤ 1, solving the INDEX problem with success
probability c requires sending Ω(n) bits.

Ce Jin (Tsinghua University) ITCS 2019 6 / 14
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INDEX protocol

Alice creates a graph consisting of n√
t
disjoint groups. Each group is a

bipartite graph with
√
t vertices on each side.

By inserting edges into every groups, she can encode
n√
t
×

√
t ×

√
t = n

√
t bits of information.

Bob wants to see whether edge (a, b) exists.
Alice sends the memory of the streaming algorithm to Bob. Bob adds

√
t

vertices and connect each of them to every vertex in a’s side.
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Space lower bound for undirected graphs

Bob wants to see whether edge (a, b) exists.
He adds

√
t vertices and connects each of them to every vertex in a’s side.

Starting from a Bob’s vertex, go to a w.p. 1√
t
, then go to b w.p.

Θ( 1√
t
)

visit a Bob’s vertex every O(1) steps with good probability

Edge (a, b) is likely to be visited (if exists) after O(t) steps. So bob can
tell whether (a, b) exists by simulating the generated O(t)-step random
walk.
By INDEX lower bound, we need Ω(n

√
t) bits of space.
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Bob wants to see whether edge (a, b) exists.
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)
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tell whether (a, b) exists by simulating the generated O(t)-step random
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Algorithm for undirected graphs

(For now we assume there are no multiple edges or self-loops)

Small vertices: degree ≤ C

Big vertices: degree > C

for some parameter C ≈
√
t.

For every small vertex u: store all neighbors of u.
For every big vertex u: store C independent samples of u’s big neighbors.
Total space: O(n

√
t) words.
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Algorithm for undirected graphs using O(n
√
t) space

For every small vertex u: store all neighbors of u.

For every big vertex u: store C independent samples of u’s big neighbors.

How to simulate a random walk? (Suppose we are now at vertex u)

If u is small: simply pick a random neighbor v as the next vertex

If u is big: flip a biased coin to decide if the next vertex will be
big/small

▶ next vertex is small: pick a random small neighbor (we know all of
them!)

▶ next vertex is big: have to consume a sample of u’s big neighbor.
(FAIL if all have been used)

If we can make Pr[FAIL]≤ ε, then our output distribution will be
(2ε)-close.
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Analysis of failure probability

We say a vertex u fails, if the failure happens when we are at u.

Pr[FAIL] ≤
∑

u Pr[u fails]
u fails only if the number of “u → Big” steps exceeds C .

Pr[u fails] ≤
∑

walk w

Pr[w ] · 1[w has more than C “u → Big” steps]

where Pr[(v0, v1, . . . , vt)] =
1

d(v0)d(v1) . . . d(vt−1)

= Pr[(vt , . . . , v0)]
d(vt)

d(v0)

The reversed walk (vt , . . . , v0) is still a walk (since the graph is
undirected).
“u → Big” steps becomes “Big → u” steps!
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Algorithm for undirected graphs

Hence

Pr[u fails] ≤ n
∑

walk w

Pr[w ] · 1[w has more than C “Big → u” steps]

Big vertex has degree > C . Pr
[
vi → vi+1 is a “Big → u” step | vi

]
< 1/C

In t steps, “Big → u” happens < t/C times in expectation (and it has
concentration!)
Choosing C = O(

√
t log nε−1) makes Pr[FAIL] ≤

∑
u Pr[u fails] ≪ ε.

(we can improve the log-factor using more careful analysis..)
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Dealing with multiple edges

When there are multiple edges,

Pr
[
vi → vi+1 is a “Big → u” step | vi

]
< 1/C

might not hold. (example: most of v ’s adjacent edges are connecting u)

Fix: For each u, we use heavy-hitter algorithms to find those neighbors v
such that Pr[vi = v | vi−1 = u] > 1/C .
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Thank you!
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