Hardness Magnification for all Sparse NP Languages

Lijie Chen MIT

Ce Jin Tsinghua U. Ryan Williams MIT

Problem: MCSP[s(m)] • **Given:** $f: \{0,1\}^m \rightarrow \{0,1\}$ as a truth table of length $n = 2^m$ • **Decide:** Does f have a circuit of size at most s(m)?

Problem: MCSP[s(m)]

- **Given:** $f: \{0,1\}^m \rightarrow \{0,1\}$ as a truth table of length $n = 2^m$
- **Decide:** Does f have a circuit of size at most s(m)?

MCSP[s(m)] \in NP; solvable in $n \cdot 2^{\tilde{O}(s(m))}$ time.

Problem: MCSP[s(m)]

- **Given:** $f: \{0,1\}^m \rightarrow \{0,1\}$ as a truth table of length $n = 2^m$
- **Decide:** Does f have a circuit of size at most s(m)?

MCSP[s(m)] \in NP; solvable in $n \cdot 2^{\tilde{O}(s(m))}$ time.

We believe MCSP[m^{10}] \notin **P**/**poly**! (otherwise, no strong PRGs exist [Razborov-Rudich])

Problem: MCSP[s(m)]

- **Given:** $f: \{0,1\}^m \rightarrow \{0,1\}$ as a truth table of length $n = 2^m$
- **Decide:** Does f have a circuit of size at most s(m)?

MCSP[s(m)] \in NP; solvable in $n \cdot 2^{\tilde{O}(s(m))}$ time.

We believe MCSP[m^{10}] \notin **P**/**poly**! (otherwise, no strong PRGs exist [Razborov-Rudich])

If MCSP[m^{10}] **doesn't have** circuits of $n \cdot \text{polylog } n$ size and polylog n depth, then NP $\not\subset$ P/poly.

(McKay-Murray-Williams'19)

Problem: MCSP[s(m)]

- **Given:** $f: \{0,1\}^m \rightarrow \{0,1\}$ as a truth table of length $n = 2^m$
- **Decide:** Does f have a circuit of size at most s(m)?

MCSP[s(m)] \in NP; solvable in $n \cdot 2^{\tilde{O}(s(m))}$ time.

We believe MCSP[m^{10}] \notin **P**/**poly**! (otherwise, no strong PRGs exist [Razborov-Rudich])

If MCSP[m^{10}] **doesn't have** circuits of $n \cdot \text{polylog } n$ size and polylog n depth, then NP $\not\subset$ P/poly.

(McKay-Murray-Williams'19)

"Hardness Magnification"

(Input length $n = 2^m$)

If MCSP[m^{10}] doesn't have circuits of $n \cdot \text{polylog } n$ size and polylog n depth, then NP $\not\subset$ P/poly.

(McKay-Murray-Williams'19)

Similar magnification results for MKtP (Minimum *time-bounded* Kolmogorov Complexity, Kt(x))

(Input length $n = 2^m$)

If MCSP[m^{10}] doesn't have circuits of $n \cdot \text{polylog } n$ size and polylog n depth, then NP $\not\subset$ P/poly.

(McKay-Murray-Williams'19)

Similar magnification results for MKtP (Minimum *time-bounded* Kolmogorov Complexity, Kt(x))

Kt(x) = "measure of how much info needed to generate x quickly" MKtP \approx MCSP with "EXP-oracle gates"

(Input length $n = 2^m$)

If MCSP[m^{10}] doesn't have circuits of $n \cdot \text{polylog } n$ size and polylog n depth, then NP $\not\subset$ P/poly.

(McKay-Murray-Williams'19)

Similar magnification results for MKtP (Minimum *time-bounded* Kolmogorov Complexity, Kt(x))

Kt(x) = "measure of how much info needed to generate x quickly" MKtP \approx MCSP with "EXP-oracle gates"

("Gap-MKtP[a, b]": distinguish between $Kt(x) \le a$ and $Kt(x) \ge b$)

If Gap-MKtP[m^{10} , $m^{10} + O(m)$] **doesn't have** n^3 polylog *n*-size (De Morgan) Formulas, then **EXP** $\not\subset$ **NC**¹.

(Oliveira-Pich-Santhanam'19)

(Input length $n = 2^m$)

If MCSP[m^{10}] doesn't have circuits of $n \cdot \text{polylog } n$ size and polylog n depth, then NP $\not\subset$ P/poly.

(McKay-Murray-Williams'19)

Similar magnification results for MKtP (Minimum time-bounded Kolmogorov Complexity, Kt(x)) Kt(x) = "measure of how much info needed to generate x quickly" oroolo gotoo MKtP ≈ MCS^Ditb (Other Hardness Magnification Results) $n^{1-\varepsilon}$ -approximate Clique [Sri'03] ("Gap-MKtF $\geq b$) Average-case MCSP [OS'18] k-Vertex-Cover [OS'18] If Gap-MKtF n-size low-depth circuit LBs for NC¹ [AK'10,CT'19] (De Morgan sublinear-depth circuit LBs for P [LW'13] nam'19)

Suggests new approaches to proving strong lower bounds?

It is argued that HM can bypass the **Natural Proof Barrier** [Razborov-Rudich]

It is argued that HM can bypass the **Natural Proof Barrier** [Razborov-Rudich]

• A heuristic argument [AK'10, OS'18]: HM seems to yield strong LBs only for *certain* functions, not for *most* of them (violating the "largeness" condition of Natural Proofs)

It is argued that HM can bypass the **Natural Proof Barrier** [Razborov-Rudich]

- A heuristic argument [AK'10, OS'18]: HM seems to yield strong LBs only for *certain* functions, not for *most* of them (violating the "largeness" condition of Natural Proofs)
- A real theorem [CHOPRS to appear in ITCS'20] In some cases, the required weak LB actually implies the *non-existence* of natural proofs

(Input length $n = 2^m$)

If Gap-MKtP[m^{10} , $m^{10} + O(m)$] • **doesn't have** n^3 polylog *n*-size (De Morgan) Formulas, then **EXP** $\not\subset$ **NC**¹.

[OPS'19]

(Input length $n = 2^m$)

If Gap-MKtP[m^{10} , $m^{10} + O(m)$] • **doesn't have** n^3 polylog n-size (De Morgan) Formulas, then EXP $\not\subset$ NC¹.

[OPS'19]

We know how to prove $n^{1.99}$ -size formula lower bound for Gap-MKtP ! [OPS'19]

(Input length $n = 2^m$)

If Gap-MKtP[m^{10} , $m^{10} + O(m)$] • **doesn't have** n^3 polylog *n*-size (De Morgan) Formulas, then **EXP** $\not\subset$ **NC**¹.

[OPS'19]

We know how to prove $n^{1.99}$ -size formula lower bound for Gap-MKtP ! [OPS'19]

Can we improve it by a factor of $n^{1+\varepsilon}$?

(Input length $n = 2^m$)

If Gap-MKtP[m^{10} , $m^{10} + O(m)$]

• **doesn't have** n^3 polylog *n*-size (De Morgan) Formulas, then **EXP** $\not\subset$ **NC**¹.

• doesn't have $n \cdot \operatorname{polylog} n$ -size Formula- \oplus , then **EXP** $\not\subset$ **NC**¹.

[OPS'19]

Formula-⊕: De Morgan Formulas where each leaf node computes XOR of a subset of input bits

(Input length $n = 2^m$)

If Gap-MKtP[m^{10} , $m^{10} + O(m)$]

• **doesn't have** n^3 polylog *n*-size (De Morgan) Formulas, then **EXP** $\not\subset$ **NC**¹.

• doesn't have $n \cdot \operatorname{polylog} n$ -size Formula- \oplus , then **EXP** $\not\subset$ **NC**¹.

Known LB against Formula- \oplus (Tal'16) : F_2 -Inner-Product \notin Formula- $\oplus \left[\frac{n^2}{polylog n}\right]$

Stronger LB than required

(Input length $n = 2^m$)

If Gap-MKtP[m^{10} , $m^{10} + O(m)$]

• **doesn't have** n^3 polylog *n*-size (De Morgan) Formulas, then **EXP** $\not\subset$ **NC**¹.

• doesn't have $n \cdot \text{polylog } n$ -size Formula- \oplus , then **EXP** $\not\subset$ **NC**¹.

Known LB against Formula- \oplus (Tal'16) : **F**₂-Inner-Product \notin **Formula-\oplus** $[n^2 / \text{polylog } n]$

Much easier than Gap-MKtP??!

Stronger LB than required

(Input length $n = 2^m$)

If Gap-MKtP[m^{10} , $m^{10} + O(m)$]

• **doesn't have** n^3 polylog *n*-size (De Morgan) Formulas, then **EXP** $\not\subset$ **NC**¹.

• doesn't have $n \cdot \text{polylog } n$ -size Formula- \oplus , then **EXP** $\not\subset$ **NC**¹.

Known LB against Formula- \oplus (Tal'16) : **F**₂-Inner-Product \notin **Formula-\oplus** $[n^2 / \text{polylog } n]$

Much easier than Gap-MKtP??!

Stronger LB than required

Can we adapt the proof techniques to Gap-MKtP?

Weak LB

Strong LB

Magnification

Suggests new approaches to proving strong lower bounds? Indicates proving "weak" lower bounds are even harder than previously thought??

• Hardness magnification:

Proving *almost-linear size lower bounds* is already as hard as proving *super-polynomial lower bounds*...

(Input length $n = 2^m$)

If $MCSP[m^{10}]$ doesn't have circuits of $n \cdot polylog n$ size and polylog n depth, then NP $\not\subset$ P/poly.

- If Gap-MKtP[m^{10} , m^{10} + O(m)]
- doesn't have n^3 polylog *n*-size (De Morgan) Formula, then EXP $\not\subset$ NC¹.
- doesn't have $n \cdot \text{polylog } n$ -size Formula- \oplus , then EXP $\not\subset$ NC¹.

What is special about MCSP and MKtP? Is it because they are "compression" problems?

Problem: MCSP[s(m)]

- **Given:** $f: \{0,1\}^m \rightarrow \{0,1\}$ as a truth table of length $n = 2^m$
- **Decide:** Does f have a circuit of size at most s(m)?

(Input length $n = 2^m$)

If MCSP[m^{10}] doesn't have circuits of $n \cdot \text{polylog } n$ size and polylog n depth, then NP $\not\subset$ P/poly.

If Gap-MKtP[m^{10} , $m^{10} + O(m)$]

- doesn't have n^3 polylog *n*-size (De Morgan) Formula, then EXP $\not\subset$ NC¹.
- doesn't have $n \cdot \text{polylog } n$ -size Formula- \oplus , then EXP $\not\subset$ NC¹.

What is special about MCSP and MKtP?

Is it because they are "compression" problems?

Observation: $MCSP[m^{10}]$ and $MKtP[m^{10}]$ are *sparse* languages!

MCSP[s(m)] is $2^{\tilde{O}(s(m))}$ -sparse; there are at most $2^{\tilde{O}(s(m))}$ many circuits!

Problem: MCSP[s(m)]

- **Given:** $f: \{0,1\}^m \rightarrow \{0,1\}$ as a truth table of length $n = 2^m$
- **Decide:** Does f have a circuit of size at most s(m)?

(Input length $n = 2^m$)

If MCSP[m^{10}] doesn't have circuits of $n \cdot \text{polylog } n$ size and polylog n depth, then NP $\not\subset$ P/poly.

If Gap-MKtP[m^{10} , $m^{10} + O(m)$]

- doesn't have n^3 polylog *n*-size (De Morgan) Formula, then EXP $\not\subset$ NC¹.
- doesn't have $n \cdot \text{polylog } n$ -size Formula- \oplus , then EXP $\not\subset$ NC¹.

What is special about MCSP and MKtP? Is it because they are "compression" problems?

Observation: MCSP[m^{10}] and MKtP[m^{10}] are **sparse** languages!

MCSP[s(m)] is $2^{\tilde{O}(s(m))}$ -sparse; there are at most $2^{\tilde{O}(s(m))}$ many circuits!

Our result: Hardness magnification holds for all sparse NP languages!

Theorem 1:

- Let *L* be **any** $2^{n^{o(1)}}$ -sparse NP language.
- If L doesn't have $n^{1.01}$ -size circuits, then for all k, NP $\not\subset$ SIZE $[n^k]$.

Theorem 1:

Let *L* be **any** $2^{n^{o(1)}}$ -sparse NP language.

- If L doesn't have $n^{1.01}$ -size circuits, then for all k, NP $\not\subset$ SIZE $[n^k]$.
- If L doesn't have n^{3.01}-size formulas, then
 for all k, NP doesn't have n^k-size formulas.
- If L doesn't have n^{2.01}-size branching programs, then
 for all k, NP doesn't have n^k-size branching programs.

Similar results for other models!

Theorem 1:

Let *L* be **any** $2^{n^{o(1)}}$ -sparse **NP** language.

- If L doesn't have $n^{1.01}$ -size circuits, then for all k, NP $\not\subset$ SIZE $[n^k]$.
- If L doesn't have n^{3.01}-size formulas, then
 for all k, NP doesn't have n^k-size formulas.
- If L doesn't have n^{2.01}-size branching programs, then
 for all k, NP doesn't have n^k-size branching programs.
- Similar results for other models!
- Compared with [MMW'19]: Our techniques yield weaker consequences (e.g. they get $NP \not\subset P/poly$), but apply to more restricted models.

Theorem 1:

Let *L* be **any** $2^{n^{o(1)}}$ -sparse **NP** language.

- If L doesn't have $n^{1.01}$ -size circuits, then for all k, NP $\not\subset$ SIZE $[n^k]$.
- If L doesn't have n^{3.01}-size formulas, then
 for all k, NP doesn't have n^k-size formulas.
- If L doesn't have n^{2.01}-size branching programs, then for all k, NP doesn't have n^k-size branching programs.
- Similar results for other models!
- Compared with [MMW'19]: Our techniques yield weaker consequences (e.g. they get $NP \not\subset P/poly$), but apply to more restricted models.
- (Best known formula LB: n^3 /polylog n) [Håstad 90s, Tal] (Best known branching program LB: n^2 /polylog n) [Nečiporuk 60s]

(Input length $n = 2^m$)

Theorem 2:

If MCSP[m^{10}] doesn't have n^3 polylog *n*-size (De Morgan) Formulas, then **PSPACE** $\not\subset$ (nonuniform) **NC**¹.

Similar results for other models!

(Input length $n = 2^m$)

Theorem 2:

If MCSP[m^{10}] doesn't have n^3 polylog *n*-size (De Morgan) Formulas, then **PSPACE** $\not\subset$ (nonuniform) **NC**¹.

Similar results for other models!

Best MCSP lower bound (Cheraghchi-Kabanets-Lu-Myrisiotis'19) : MCSP $[2^m/10m]$ requires $n^{3-o(1)}$ -size formulas. (doesn't work for $m^{10}...$)

(Input length $n = 2^m$)

Theorem 2:

If MCSP[m^{10}] doesn't have n^3 polylog *n*-size (De Morgan) Formulas, then **PSPACE** $\not\subset$ (nonuniform) **NC**¹.

Similar results for other models!

Best MCSP lower bound (Cheraghchi-Kabanets-Lu-Myrisiotis'19) : MCSP $[2^m/10m]$ requires $n^{3-o(1)}$ -size formulas. (doesn't work for $m^{10}...$)

Similar results for MKtP[m^{10}] and EXP $\not\subset$ NC¹ (improving upon [OPS'19] which required lower bounds for Gap-MKtP)

Algorithms with small non-uniformity

Theorem 3:

Let *L* be a $2^{n^{0(1)}}$ -sparse NP language not computable by an $n^{1.01}$ -time $n^{0.01}$ -space deterministic algorithm with $n^{0.01}$ bits of advice, then NP $\not\subset$ SIZE $[n^k]$ for all *k*.

Algorithms with small non-uniformity

Theorem 3:

Let *L* be a $2^{n^{o(1)}}$ -sparse NP language not computable by an $n^{1.01}$ -time $n^{0.01}$ -space deterministic algorithm with $n^{0.01}$ bits of advice, then NP $\not\subset$ SIZE $[n^k]$ for all *k*.

The hypothesis is "close" to what we can prove!

There is a $(2^{n^{0.01}} \cdot n)$ -sparse language $L \in \text{DTIME}[\tilde{O}(n^{1.01})]$, not computable by an $n^{1.01}$ -time deterministic algorithm with $n^{0.01}$ bits of advice.

(Adaptation of time hierarchy theorem)

Algorithms with small non-uniformity

Theorem 3:

Let *L* be a $2^{n^{0(1)}}$ -sparse NP language not computable by an $n^{1.01}$ -time $n^{0.01}$ -space deterministic algorithm with $n^{0.01}$ bits of advice, then NP $\not\subset$ SIZE $[n^k]$ for all *k*.

The hypothesis is "close" to what we can prove!

There is a $(2^{n^{0.01}} \cdot n)$ -sparse language $L \in DTIME[\tilde{O}(n^{1.01})]$, not computable by an $n^{1.01}$ -time deterministic algorithm with $n^{0.01}$ bits of advice. (Adaptation of time hierarchy theorem)

Can we make it sparser?

Let *L* be **any** $2^{n^{o(1)}}$ -sparse NP language. • If *L* doesn't have $n^{3.01}$ -size formulas, then **for every** *k*, NP **doesn't have** n^k -size formulas.

Assume: **NP** has n^k -size formulas for some k.

Intuition

Assume: **NP** has n^k -size formulas for some k.

Goal: Design $n^{3.01}$ -size formulas for $2^{n^{o(1)}}$ -sparse NP language L.

(Sparse) $L \cap \{0,1\}^n$

Intuition

Assume: **NP** has n^k -size formulas for some k.

Intuition

Assume: **NP** has n^k -size formulas for some k.

Assume: **NP** has n^k -size formulas for some k.

Goal: Design $n^{3.01}$ -size formulas for $2^{n^{o(1)}}$ -sparse NP language L.

Set $t \coloneqq n^{0.001/k} > \log$ (Sparsity of *L*).

Standard hashing tricks imply:

There is a hash function $H_s: \{0,1\}^n \to \{0,1\}^{O(t)}$ that is

- Perfect: maps YES-instances of *L* into *distinct* images
- described by an O(t)-bit seed s
- linear over \mathbf{F}_2

(there is a "correct" seed s that makes the hash function H_s perfect)

Assume: **NP** has n^k -size formulas for some k.

Goal: Design $n^{3.01}$ -size formulas for $2^{n^{o(1)}}$ -sparse NP language L.

Set $t \coloneqq n^{0.001/k} > \log$ (Sparsity of *L*).

Standard hashing tricks imply:

There is a hash function $H_s: \{0,1\}^n \to \{0,1\}^{O(t)}$ that is

- Perfect: maps YES-instances of L into distinct images
- described by an O(t)-b $\sim d s$
- · linear over \mathbf{F}_2

(Construction: pick some coordinates from the Error Correcting Code)

Assume: **NP** has n^k -size formulas for some k.

Goal: Design $n^{3.01}$ -size formulas for $2^{n^{o(1)}}$ -sparse NP language L.

 $(t \coloneqq n^{0.001/k} > \log (\text{Sparsity of } L))$ (Perfect hash $H_s: \{0,1\}^n \to \{0,1\}^{O(t)}$ with seed |s| = O(t))

Define an O(t)-input auxiliary NP problem K ("kernel problem"):

Input: Hash seed *s*, hash value *h*, index $i \in [n]$ **Output:** The *i*-th bit of **some** $x \in L$ such that $H_s(x) = h$.

For the "correct" *s*, this *x* is *unique*

Assume: **NP** has n^k -size formulas for some k.

Goal: Design $n^{3.01}$ -size formulas for $2^{n^{o(1)}}$ -sparse NP language L.

 $(t \coloneqq n^{0.001/k} > \log (\text{Sparsity of } L))$ (Perfect hash $H_s: \{0,1\}^n \to \{0,1\}^{O(t)}$ with seed |s| = O(t))

Define an O(t)-input auxiliary NP problem K ("kernel problem"):

Input: Hash seed *s*, hash value *h*, index $i \in [n]$ **Output:** The *i*-th bit of **some** $x \in L$ such that $H_s(x) = h$.

NP has n^k -size formulas $\Rightarrow K$ has formulas of size $n^{0.001}$!

Assume: **NP** has n^k -size formulas for some k.

Goal: Design $n^{3.01}$ -size formulas for $2^{n^{o(1)}}$ -sparse NP language L.

 $(t \coloneqq n^{0.001/k} > \log (\text{Sparsity of } L))$ (Perfect hash $H_s: \{0,1\}^n \to \{0,1\}^{O(t)}$ with seed |s| = O(t))

Define an O(t)-input auxiliary NP problem K ("kernel problem"):

Input: Hash seed *s*, hash value *h*, index $i \in [n]$ **Output:** The *i*-th bit of **some** $x \in L$ such that $H_s(x) = h$.

NP has n^k -size formulas $\Rightarrow K$ has formulas of size $n^{0.001}$! On input (s, h, i), guess (x, y), where y witnesses $x \in L$. Accept $\Leftrightarrow x_i = 1$ and $H_s(x) = h$.

Assume: **NP** has n^k -size formulas for some k.

Goal: Design $n^{3.01}$ -size formulas for $2^{n^{o(1)}}$ -sparse NP language L.

 $(t \coloneqq n^{0.001/k} > \log (\text{Sparsity of } L))$ (Perfect hash $H_s: \{0,1\}^n \to \{0,1\}^{O(t)}$ with seed |s| = O(t))

Define an O(t)-input auxiliary NP problem K ("kernel problem"):

Input: Hash seed *s*, hash value *h*, index $i \in [n]$ **Output:** The *i*-th bit of **some** $x \in L$ such that $H_s(x) = h$.

Claim: for the "correct" *s*, the following decides L:

On input $x \in \{0,1\}^n$, accept iff: $\forall i \in [n], K(s, H_s(x), i) = x_i$

On input $x \in \{0,1\}^n$, accept iff: $\forall i \in [n], K(s, H_s(x), i) = x_i$

Open Problems

• Are there any **other natural sparse NP languages** for which one can prove some concrete lower bounds?

Open Problems

- Are there any **other natural sparse NP languages** for which one can prove some concrete lower bounds?
- Is it possible to show hardness magnification results for "denser" variants of MCSP or MKtP, such as $MCSP[2^m/m^3]$?

Open Problems

- Are there any **other natural sparse NP languages** for which one can prove some concrete lower bounds?
- Is it possible to show hardness magnification results for "denser" variants of MCSP or MKtP, such as $MCSP[2^m/m^3]$?

Thank you!