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If MCSP[m!°] doesn’t have circuits of n - polylog n size and
polylog n depth, then NP ¢ P/poly.

(McKay-Murray-Williams’'19)

Similar magnification results for MKtP (Minimum time-bounded
Kolmogorov Complexity, Kt(x) )

Kt(x) = measure of how much info needed to generate x quickly”
MKtP =~ MCS
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It is argued that HM can bypass the Natural Proof Barrier
[Razborov-Rudich]

* A heuristic argument [AK'10, OS’18]: HM seems to yield strong
LBs only for certain functions, not for most of them
(violating the “largeness™ condition of Natural Proofs)

* A real theorem [CHOPRS to appear in ITCS’20]
In some cases, the required weak LB actually implies the
non-existence of natural proofs
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(Input length n = 2™)

If Gap-MKtP[m®, m'® + 0(m)]
doesn’t have n3polylog n-size (De Morgan) Formulas, then

. doesn’t have n - polylog n-size Formula-@, then EXP ¢ NC?.

—/\ [OPS™19]

Formula-&: De Morgan Formulas
where each leaf node computes
XOR of a subset of input bits
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Extending Known Lower Bounds?
(Input length n = 2™)

If Gap-MKtP[m®, m'® + 0(m)]
doesn’t have n’polylog n-size (De Morgan) Formulas, then

. doesn’t have n - polylog n-size Formula-®, then EXP ¢ NC.

T

Known LB against Formula-@®(Tal’16) :
F,-Inner-Product € Formula-@ [nz/ polylog n]

Much easier than Gap-MKtP??! Stronger LB than required

Can we adapt the proof techniques to Gap-MKtP?
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Indicates proving
“‘weak” lower bounds
are even harder than

[ Weak LB } previously thought??

Magnification

Strong LB

* Hardness magnification:

Proving almost-linear size lower bounds Is
already as hard as proving
super-polynomial lower bounds...
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. doesn’t have n - polylog n-size Formula-@, then EXP ¢ NC!.

What is special about MCSP and MKtP?
Is it because they are “compression” problems?

Observation: MCSP[m!°] and MKtP[m!°]
are sparse languages!

MCSP[s(m)] is 206M)_gparse;
there are at most 22(M) many circuits!

Our result: Hardness magnification holds for
all sparse NP languages!
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Let L be any 2”0(1) -sparse NP language.
- If L doesn’t have n!%1-size circuits, then for all k, NP ¢ SIZE[n*|.
. If L doesn’t have n3-%1-size formulas, then
for all k, NP doesn’t have n*-size formulas.
. If L doesn’t have n*1-size branching programs, then
for all k, NP doesn’t have n*-size branching programs.

Similar results for other models!

Compared with [MMW’19]: Our techniques yield weaker

consequences (e.g. they get NP ¢ P/poly), but apply to more
restricted models.

(Best known formula LB: n3 /polylog n) [Hastad 90s, Tal]
(Best known branching program LB: n*/polylog n) [Negiporuk 60s]
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Hardness Magnification for MCSP

(Input length n = 2™)

Theorem 2:

If MCSP[m!°] doesn’t have n3polylog n-size (De Morgan)
Formulas, then PSPACE ¢ (nonuniform) NC!.

Similar results for other models!

Best MCSP lower bound (Cheraghchi-Kabanets-Lu-Myrisiotis'19) :

MCSP[2™ /10m] requires n3~°M_sjze formulas.
(doesn’t work for m19...)

Similar results for MKtP[m!°] and EXP ¢ NC! (improving upon
[OPS’19] which required lower bounds for Gap-MKtP)
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1
Let L be a 2"0( )—sparse NP language not computable by an
n1%-time n%%-space deterministic algorithm with n°%°1 bits
of advice, then NP ¢ SIZE[n*| for all k.

The hypothesis is “close” to what we can prove!

0.01 ~
There is a (2" : n)—sparse language L € DTIME[O(n1°1)],

not computable by an n1%1-time deterministic algorithm with
001 hits of advice.

(Adapkation\oktime hierarchy theorem)

Can we make it sparser?
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Assume: NP has n*-size formulas for some k.

1
Goal: Design n391-size formulas for on )-sparse NP language L.
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We will construct cubic-size
formulas for L, with oracle
accessto K.

0.001/k ,_ ,
("kernel problem”)
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Set t := n%001/k > 1og (Sparsity of L).

Standard hashing tricks imply:

There is a hash function Hy: {0,1}"* — {0,1}°®) thatis
- Perfect: maps YES-ins*ances of L into distinct images
- described by an 0(t)-k d s
- linear over F,

(Construction: pick some coordinates
from the Error Correcting Code)
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Assume: NP has n*-size formulas for some k.

1
Goal: Design n391-size formulas for on )-sparse NP language L.

(t :== n0001/k > Jog (Sparsity of L))
(Perfect hash H,: {0,1}"* — {0,1}°® with seed |s| = 0(t) )

Define an O (t)-input auxiliary NP problem K (“kernel problem™):

Input: Hash seed s, hash value h, index i € [n]
Output: The i-th bit of some x € L such that H,(x) = h.

NP has n’-size formulas = K has formulas of size n9-001

On input (s, h, i), guess (x,y), where y witnesses x € L.
Accept & x; = 1land Hy(x) = h.




Proof of Theorem 1.2

Assume: NP has n*-size formulas for some k.

1
Goal: Design n391-size formulas for on )-sparse NP language L.

(t :== n0001/k > Jog (Sparsity of L))
(Perfect hash H,: {0,1}"* — {0,1}°® with seed |s| = 0(t) )

Define an O (t)-input auxiliary NP problem K (“kernel problem™):

Input: Hash seed s, hash value h, index i € [n]
Output: The i-th bit of some x € L such that H,(x) = h.

Claim: for the “correct” s, the following decides L:

On input x € {0,1}", accept Iff:
Vi € [n], K(s, Hs(x), i) = x;
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Goal: Design n3°!-size formulas for on )—sparse NP language L.

On input x € {0,1}", accept iff:
Vi € [n], K(s,Hs(x),1) = x;

_ Each bit of H,(x) is
K: n%%_size an XOR function

Hash seed s AND (implemented by De
Morgan formulas of

hardwired into formulas/ / « | . 2
size 0(n*))
=7

/ \x . N
K 1 K Xn
S sx) 1 S  Hg(x) n

/ \\ \\ Total size / \\ / \\

n - 0001 . O(nZ)
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Thank you!



