Hardness Magnification for all
Sparse NP Languages

Lijie Chen Ce Jin Ryan Williams
MIT Tsinghua U. MIT

Minimum Circuit Size Problem

Problem: MCSP[s(m)]
- Given: f:{0,1}" — {0,1} as a truth table of length n = 2™
- Decide: Does f have a circuit of size at most s(m)?

Minimum Circuit Size Problem

Problem: MCSP[s(m)]
- Given: f:{0,1}" — {0,1} as a truth table of length n = 2™
- Decide: Does f have a circuit of size at most s(m)?

MCSP[s(m)] € NP; solvable in n - 20(s(m) time.

Minimum Circuit Size Problem

Problem: MCSP[s(m)]
- Given: f:{0,1}" — {0,1} as a truth table of length n = 2™
- Decide: Does f have a circuit of size at most s(m)?

MCSP[s(m)] € NP; solvable in n - 20(s(m) time.

We believe MCSP[m!°] ¢ P/poly!
(otherwise, no strong PRGs exist [Razborov-Rudich])

Minimum Circuit Size Problem

Problem: MCSP[s(m)]

- Given: f:{0,1}" — {0,1} as a truth table of length n = 2™
- Decide: Does f have a circuit of size at most s(m)?

MCSP[s(m)] € NP; solvable in n - 20(s(m) time.

We believe MCSP[m!°] ¢ P/poly!
(otherwise, no strong PRGs exist [Razborov-Rudich])

If MCSP[m!°] doesn’t have circuits of n - polylog n size and
polylog n depth, then NP ¢ P/poly.

(McKay-Murray-Williams’'19)

Minimum Circuit Size Problem

Problem: MCSP[s(m)]

- Given: f:{0,1}" — {0,1} as a truth table of length n = 2™
- Decide: Does f have a circuit of size at most s(m)?

MCSP[s(m)] € NP; solvable in n - 20(s(m) time.

We believe MCSP[m!°] ¢ P/poly!
(otherwise, no strong PRGs exist [Razborov-Rudich])

If MCSP[m!°] doesn’t have circuits of n - polylog n size and
polylog n depth, then NP ¢ P/poly.

(McKay-Murray-Williams’'19)
“Hardness Magnification”

Hardness Magnification for MCSP

(Input length n = 2™)

If MCSP[m!°] doesn’t have circuits of n - polylog n size and
polylog n depth, then NP ¢ P/poly.

(McKay-Murray-Williams'19)

Similar magnification results for MKtP (Minimum time-bounded
Kolmogorov Complexity, Kt(x))

Hardness Magnification for MCSP
(Input length n = 2™)

If MCSP[m!°] doesn’t have circuits of n - polylog n size and
polylog n depth, then NP ¢ P/poly.

(McKay-Murray-Williams'19)

Similar magnification results for MKtP (Minimum time-bounded
Kolmogorov Complexity, Kt(x))

Kt(x) = “measure of how much info needed to generate x quickly”
MKtP ~ MCSP with “EXP-oracle gates”

Hardness Magnification for MCSP
(Input length n = 2™)

If MCSP[m!°] doesn’t have circuits of n - polylog n size and
polylog n depth, then NP ¢ P/poly.

(McKay-Murray-Williams'19)

Similar magnification results for MKtP (Minimum time-bounded
Kolmogorov Complexity, Kt(x))

Kt(x) = “measure of how much info needed to generate x quickly”
MKtP ~ MCSP with “EXP-oracle gates”

(“Gap-MKtP[a, b]”: distinguish between Kt(x) < a and Kt(x) = b)

If Gap-MKtP[m!°, m!Y + 0(m)] doesn’t have n3polylog n-size
(De Morgan) Formulas, then EXP ¢ NC!.

(Oliveira-Pich-Santhanam’19)

Hardness Magnification for MCSP
(Input length n = 2™)

If MCSP[m!°] doesn’t have circuits of n - polylog n size and
polylog n depth, then NP ¢ P/poly.

(McKay-Murray-Williams’'19)

Similar magnification results for MKtP (Minimum time-bounded
Kolmogorov Complexity, Kt(x))

Kt(x) = measure of how much info needed to generate x quickly”
MKtP =~ MCS

f\l\

(Other Hardness Magnlflcatlon Results)

1-¢ : i i’
« _MKtP n-~¢-approximate Clique [Sri'03] -
("Gap-MK Average-case MCSP [0S'18] = D)
|-|: Gap-I\/IK'[F k-Vertex-Cover [OS 18] n Size

low-depth circuit LBs for NC! [AK’10,CT’19]

(De Morgan sublinear-depth circuit LBs for P [LW’13]

How to view Hardness Magnification?

Suggests new [Weak LB }
approaches to

proving strong
lower bounds?

Magnification

Strong LB

How to view Hardness Magnification?

Suggests new [Weak LB }
approaches to

proving strong
lower bounds?

Magnification

Strong LB

It is argued that HM can bypass the Natural Proof Barrier
[Razborov-Rudich]

How to view Hardness Magnification?

Suggests new [Weak LB J
approaches to

proving strong
lower bounds?

Magnification

Strong LB

It is argued that HM can bypass the Natural Proof Barrier
[Razborov-Rudich]

* A heuristic argument [AK'10, OS’18]: HM seems to yield strong
LBs only for certain functions, not for most of them
(violating the “largeness™ condition of Natural Proofs)

How to view Hardness Magnification?

Suggests new [Weak LB }
approaches to

proving strong
lower bounds?

Magnification

Strong LB

It is argued that HM can bypass the Natural Proof Barrier
[Razborov-Rudich]

* A heuristic argument [AK'10, OS’18]: HM seems to yield strong
LBs only for certain functions, not for most of them
(violating the “largeness™ condition of Natural Proofs)

* A real theorem [CHOPRS to appear in ITCS’20]
In some cases, the required weak LB actually implies the
non-existence of natural proofs

Extending Known Lower Bounds?
(Input length n = 2™)

If Gap-MKtP[m®, m'® + 0(m)]
- doesn’t have n3polylog n-size (De Morgan) Formulas, then
EXP ¢ NC..

[OPS’19]

Extending Known Lower Bound
(Input length n = 2™)

If Gap-MKtP[m®, m'® + 0(m)]
. doesn’t have n3polylog n-size (De Morgan) Formulas
EXP ¢ NC'.

We know how to prove n'-°°-size formu

S?

. then

OPS’19]

a

lower bound for Gap-MKtP ! [OPS'19]

Extending Known Lower Bound
(Input length n = 2™)

If Gap-MKtP[m®, m'® + 0(m)]
. doesn’t have n3polylog n-size (De Morgan) Formulas
EXP ¢ NC'.

We know how to prove n'-°°-size formu

S?

. then

OPS’19]

a

lower bound for Gap-MKtP ! [OPS'19]

Can we improve it by a factor of nt*€?

Extending Known Lower Bounds?
(Input length n = 2™)

If Gap-MKtP[m®, m'® + 0(m)]
doesn’t have n3polylog n-size (De Morgan) Formulas, then

. doesn’t have n - polylog n-size Formula-@, then EXP ¢ NC?.

—/\ [OPS™19]

Formula-&: De Morgan Formulas
where each leaf node computes
XOR of a subset of input bits

Extending Known Lower Bounds?
(Input length n = 2™)

If Gap-MKtP[m®, m'® + 0(m)]
doesn’t have n3polylog n-size (De Morgan) Formulas, then

. doesn’t have n - polylog n-size Formula-®, then EXP ¢ NC.

T

Known LB against Formula-@®(Tal’16) :
F,-Inner-Product € Formula-@ [nz/ polylog n]

Stronger LB than required

Extending Known Lower Bounds?
(Input length n = 2™)

If Gap-MKtP[m®, m'® + 0(m)]
. doesn’t have n3polylog n-size (De Morgan) Formulas, then

. doesn’t have n - polylog n-size Formula-®, then EXP ¢ NC.

T

Known LB against Formula-@®(Tal’16) :

F,-Inner-Product € Formula-@ [nz/ polylog n]

_——7
Vi

[Much easier than Gap-MKtP??! J [

Stronger LB than required }

Extending Known Lower Bounds?
(Input length n = 2™)

If Gap-MKtP[m®, m'® + 0(m)]
doesn’t have n’polylog n-size (De Morgan) Formulas, then

. doesn’t have n - polylog n-size Formula-®, then EXP ¢ NC.

T

Known LB against Formula-@®(Tal’16) :
F,-Inner-Product € Formula-@ [nz/ polylog n]

Much easier than Gap-MKtP??! Stronger LB than required

Can we adapt the proof techniques to Gap-MKtP?

How to view Hardness Magnification?

Indicates proving
“‘weak” lower bounds
are even harder than

[Weak LB J previously thought??

Magnification

Strong LB

How to view Hardness Magnification?

Indicates proving
“‘weak” lower bounds
are even harder than

[Weak LB } previously thought??

Magnification

Strong LB

* Hardness magnification:

Proving almost-linear size lower bounds Is
already as hard as proving
super-polynomial lower bounds...

(Input length n = 2™)

If MCSP[m!°] doesn’t have circuits of n - polylog n size and polylog n
depth, then NP ¢ P/poly.

Iif Gap-MKtP[m!% m® + 0(m)]

. doesn’t have n3polylog n-size (De Morgan) Formula, then EXP ¢ NC?.
. doesn’t have n - polylog n-size Formula-@, then EXP ¢ NC!.

What is special about MCSP and MKtP?
Is it because they are “compression” problems?

Problem: MCSP[s(m)]
- Given: f:{0,1}* - {0,1} as a truth table of length n = 2™
- Decide: Does f have a circuit of size at most s(m)?

(Input length n = 2™)

If MCSP[m!°] doesn’t have circuits of n - polylog n size and polylog n
depth, then NP ¢ P/poly.

Iif Gap-MKtP[m°, m® + 0(m)]

. doesn’t have n3polylog n-size (De Morgan) Formula, then EXP ¢ NC?.
. doesn’t have n - polylog n-size Formula-@, then EXP ¢ NC!.

What is special about MCSP and MKtP?
Is it because they are “compression” problems?

Observation: MCSP[m!°] and MKtP[m!°]
are sparse languages!

MCSP[s(m)] is 206M)_sparse;
there are at most 22(M) many circuits!
Problem: MCSP[s(m)]
- Given: f:{0,1}* - {0,1} as a truth table of length n = 2™
- Decide: Does f have a circuit of size at most s(m)?

(Input length n = 2™)
If MCSP[m!°] doesn’t have circuits of n - polylog n size and polylog n
depth, then NP ¢ P/poly.

Iif Gap-MKtP[m°, m® + 0(m)]
. doesn’t have n3polylog n-size (De Morgan) Formula, then EXP ¢ NC?.
. doesn’t have n - polylog n-size Formula-@, then EXP ¢ NC!.

What is special about MCSP and MKtP?
Is it because they are “compression” problems?

Observation: MCSP[m!°] and MKtP[m!°]
are sparse languages!

MCSP[s(m)] is 206M)_gparse;
there are at most 22(M) many circuits!

Our result: Hardness magnification holds for
all sparse NP languages!

HM for all sparse NP languages
Theorem 1.

1
Let L be any 2”0()—sparse NP language.
- If L doesn’t have n!%1-size circuits, then for all k, NP ¢ SIZE[n*|.

HM for all sparse NP languages
Theorem 1.

Let L be any 2”0(1) -sparse NP language.
- If L doesn’t have n!%1-size circuits, then for all k, NP ¢ SIZE[n*|.
. If L doesn’t have n3-%1-size formulas, then
for all k, NP doesn’t have n*-size formulas.
. If L doesn’t have n*1-size branching programs, then
for all k, NP doesn’t have n*-size branching programs.

Similar results for other models!

HM for all sparse NP languages

Theorem 1:

Let L be any 2”0(1) -sparse NP language.
- If L doesn’t have n!%1-size circuits, then for all k, NP ¢ SIZE[n*|.
. If L doesn’t have n3-%1-size formulas, then
for all k, NP doesn’t have n*-size formulas.
. If L doesn’t have n*1-size branching programs, then
for all k, NP doesn’t have n*-size branching programs.

Similar results for other models!

Compared with [MMW’19]: Our techniques yield weaker

consequences (e.g. they get NP ¢ P/poly), but apply to more
restricted models.

HM for all sparse NP languages
Theorem 1.

Let L be any 2”0(1) -sparse NP language.
- If L doesn’t have n!%1-size circuits, then for all k, NP ¢ SIZE[n*|.
. If L doesn’t have n3-%1-size formulas, then
for all k, NP doesn’t have n*-size formulas.
. If L doesn’t have n*1-size branching programs, then
for all k, NP doesn’t have n*-size branching programs.

Similar results for other models!

Compared with [MMW’19]: Our techniques yield weaker

consequences (e.g. they get NP ¢ P/poly), but apply to more
restricted models.

(Best known formula LB: n3 /polylog n) [Hastad 90s, Tal]
(Best known branching program LB: n*/polylog n) [Negiporuk 60s]

Hardness Magnification for MCSP

(Input length n = 2™)

Theorem 2:

If MCSP[m!°] doesn’t have n3polylog n-size (De Morgan)
Formulas, then PSPACE ¢ (nonuniform) NC!.

Similar results for other models!

Hardness Magnification for MCSP

(Input length n = 2™)

Theorem 2:

If MCSP[m!°] doesn’t have n3polylog n-size (De Morgan)
Formulas, then PSPACE ¢ (nonuniform) NC!.

Similar results for other models!

Best MCSP lower bound (Cheraghchi-Kabanets-Lu-Myrisiotis'19) :

MCSP[2™ /10m] requires n3~°M_sjze formulas.
(doesn’t work for m19...)

Hardness Magnification for MCSP

(Input length n = 2™)

Theorem 2:

If MCSP[m!°] doesn’t have n3polylog n-size (De Morgan)
Formulas, then PSPACE ¢ (nonuniform) NC!.

Similar results for other models!

Best MCSP lower bound (Cheraghchi-Kabanets-Lu-Myrisiotis'19) :

MCSP[2™ /10m] requires n3~°M_sjze formulas.
(doesn’t work for m19...)

Similar results for MKtP[m!°] and EXP ¢ NC! (improving upon
[OPS’19] which required lower bounds for Gap-MKtP)

Algorithms with small non-uniformity

Theorem 3:

1
Let L be a 2"0()—sparse NP language not computable by an
n1%-time n%%-space deterministic algorithm with n°%°1 bits
of advice, then NP ¢ SIZE[n*| for all k.

Algorithms with small non-uniformity

Theorem 3:

1
Let L be a 2"0()—sparse NP language not computable by an
n1%-time n%%-space deterministic algorithm with n°%°1 bits
of advice, then NP ¢ SIZE[n*| for all k.

The hypothesis is “close” to what we can prove!

0.01 ~
There is a (2" : n)—sparse language L € DTIME[O(n1°1)],

not computable by an n'%1-time deterministic algorithm with
n?%1 pits of advice.

(Adaptation of time hierarchy theorem)

Algorithms with small non-uniformity

Theorem 3:

1
Let L be a 2"0()—sparse NP language not computable by an
n1%-time n%%-space deterministic algorithm with n°%°1 bits
of advice, then NP ¢ SIZE[n*| for all k.

The hypothesis is “close” to what we can prove!

0.01 ~
There is a (2" : n)—sparse language L € DTIME[O(n1°1)],

not computable by an n1%1-time deterministic algorithm with
001 hits of advice.

(Adapkation\oktime hierarchy theorem)

Can we make it sparser?

Proof of Theorem 1.2

1
Let L be any on)-sparse NP language.
. If L doesn’t have n3-%1-size formulas, then for every k, NP
doesn’t have n¥*-size formulas.

Proof of Theorem 1.2

Assume: NP has n*-size formulas for some k.

1
Goal: Design n391-size formulas for on)-sparse NP language L.

Intuition

Assume: NP has n*-size formulas for some k.

1
Goal: Design n391-size formulas for on)-sparse NP language L.

0000 0001 eeeeeeeeees 1110 1111

NIN/NIN/N|YN/N/NNI'YIN/NYINN

(Sparse) L N {0,1}"

Intuition

Assume: NP has n*-size formulas for some k.

: . 1
Goal: Design n391-size formulas for on)-sparse NP language L.

0000 0001 eeeeeeeeees 1110 1111

NIN{N|N{N|Y|N/NNNYNNYNN

/

(Sparse) L N {0,1}"

YIY|N|Y

OO0 01 10 11

0.001/k

(Dense) Auxiliary NP language K N {0,1}" (“kernel problem”)

Intuition

Assume: NP has n*-size formulas for some k.

1
Goal: Design n391-size formulas for on)-sparse NP language L.

0000 0001

1110 1111

N

N

Y

\

N

N

N

NIY N/NIY NN

/

(Dense) Auxiliary NP language K N {0,1}"

Y

Y

N

Y

00

01

10

11

(Sparse) L N {0,1}"

We will construct cubic-size
formulas for L, with oracle
accessto K.

0.001/k ,_ ,
("kernel problem”)

Proof of Theorem 1.2

Assume: NP has n*-size formulas for some k.

1
Goal: Design n3-%1-size formulas for on)-sparse NP language L|.

Set t := n%001/k > 1og (Sparsity of L).

Standard hashing tricks imply:

There is a hash function Hg: {0,1}"* = {0,1}°®) thatis
- Perfect: maps YES-instances of L into distinct images
- described by an 0(t)-bit seed s
- linear over F,

(there is a “correct”

seed s that makes the
hash function H, perfect)

Proof of Theorem 1.2

Assume: NP has n*-size formulas for some k.

1
Goal: Design n391-size formulas for on)-sparse NP language L.

Set t := n%001/k > 1og (Sparsity of L).

Standard hashing tricks imply:

There is a hash function Hy: {0,1}"* — {0,1}°®) thatis
- Perfect: maps YES-ins*ances of L into distinct images
- described by an 0(t)-k d s
- linear over F,

(Construction: pick some coordinates
from the Error Correcting Code)

Proof of Theorem 1.2

Assume: NP has n*-size formulas for some k.

1
Goal: Design n3-%1-size formulas for on)-sparse NP language L|.

(t :== n0001/k > Jog (Sparsity of L))
(Perfect hash H,:{0,1}"* — {0,1}°® with seed |s| = 0(t))

Define an O (t)-input auxiliary NP problem K (“kernel problem™):

Input: Hash seed s, hash value h, index i € [n]
Output: The i-th bit of some x € L such that H,(x) = h.

For the “correct’ s, this x

IS unique

Proof of Theorem 1.2

Assume: NP has n*-size formulas for some k.

1
Goal: Design n391-size formulas for on)-sparse NP language L.

(t :== n0001/k > Jog (Sparsity of L))
(Perfect hash H,: {0,1}"* — {0,1}°® with seed |s| = 0(t))

Define an O (t)-input auxiliary NP problem K (“kernel problem™):

Input: Hash seed s, hash value h, index i € [n]
Output: The i-th bit of some x € L such that H,(x) = h.

NP has n’-size formulas = K has formulas of size n9-001

Proof of Theorem 1.2

Assume: NP has n*-size formulas for some k.

1
Goal: Design n391-size formulas for on)-sparse NP language L.

(t :== n0001/k > Jog (Sparsity of L))
(Perfect hash H,: {0,1}"* — {0,1}°® with seed |s| = 0(t))

Define an O (t)-input auxiliary NP problem K (“kernel problem™):

Input: Hash seed s, hash value h, index i € [n]
Output: The i-th bit of some x € L such that H,(x) = h.

NP has n’-size formulas = K has formulas of size n9-001

On input (s, h, i), guess (x,y), where y witnesses x € L.
Accept & x; = 1land Hy(x) = h.

Proof of Theorem 1.2

Assume: NP has n*-size formulas for some k.

1
Goal: Design n391-size formulas for on)-sparse NP language L.

(t :== n0001/k > Jog (Sparsity of L))
(Perfect hash H,: {0,1}"* — {0,1}°® with seed |s| = 0(t))

Define an O (t)-input auxiliary NP problem K (“kernel problem™):

Input: Hash seed s, hash value h, index i € [n]
Output: The i-th bit of some x € L such that H,(x) = h.

Claim: for the “correct” s, the following decides L:

On input x € {0,1}", accept Iff:
Vi € [n], K(s, Hs(x), i) = x;

1
Goal: Design n3°!-size formulas for on)—sparse NP language L.

On input x € {0,1}", accept iff:
Vi € [n], K(s,Hs(x),1) = x;

K: n%0%1_gjze

AND

/:?\ /N

X
K 1 K X

s Hg(x) 1 S Hi(x) n

1
Goal: Design n3°!-size formulas for on)—sparse NP language L.

On input x € {0,1}", accept iff:
Vi € [n], K(s,Hs(x),1) = x;

K: n%0%1_gjze

Hash seed s AND

hardwired into formulas
- AN N

X
K 1 K X

s Hy(x) 1 s Hs(x) n

1
Goal: Design n3°!-size formulas for on)—sparse NP language L.

On input x € {0,1}", accept iff:
Vi € [n], K(s,Hs(x),1) = x;

_ Each bit of H,(x) is
K: n%%_size an XOR function

Hash seed s AND (implemented by De
Morgan formulas of

hardwired into formUIaS// I size 0(n?))
=7

/ \x N
K ! K *n
s Hy@) 1 s Hyx) n

Hg
KRR KRR

1
Goal: Design n3°!-size formulas for on)—sparse NP language L.

On input x € {0,1}", accept iff:
Vi € [n], K(s,Hs(x),1) = x;

_ Each bit of H,(x) is
K: n%%_size an XOR function

Hash seed s AND (implemented by De
Morgan formulas of

hardwired into formulas/ / « | . 2
size 0(n*))
=7

/ \x . N
K 1 K Xn
S sx) 1 S Hg(x) n

/ \\ \\ Total size / \\ / \\

n - 0001 . O(nZ)

Open Problems

 Are there any other natural sparse NP languages for
which one can prove some concrete lower bounds?

Open Problems

 Are there any other natural sparse NP languages for
which one can prove some concrete lower bounds?

* |s it possible to show hardness magnification results for
“denser” variants of MCSP or MKtP, such as
MCSP[2™/m3]?

Open Problems

 Are there any other natural sparse NP languages for
which one can prove some concrete lower bounds?

* |s it possible to show hardness magnification results for
“denser” variants of MCSP or MKtP, such as
MCSP[2™/m3]?

Thank you!

