Hardness Magnification for all Sparse NP Languages

Lijie Chen MIT

Ce Jin Tsinghua U.

Ryan Williams MIT

Minimum Circuit Size Problem

Problem: MCSP[$s(m)]$

- Given: $f:\{0,1\}^{m} \rightarrow\{0,1\}$ as a truth table of length $n=2^{m}$
- Decide: Does f have a circuit of size at most $s(m)$?

Minimum Circuit Size Problem

Problem: $\operatorname{MCSP}[s(m)]$

- Given: $f:\{0,1\}^{m} \rightarrow\{0,1\}$ as a truth table of length $n=2^{m}$
- Decide: Does f have a circuit of size at most $s(m)$?
$\operatorname{MCSP}[s(m)] \in$ NP; solvable in $n \cdot 2^{\tilde{o}(s(m))}$ time.

Minimum Circuit Size Problem

Problem: $\operatorname{MCSP}[s(m)]$

- Given: $f:\{0,1\}^{m} \rightarrow\{0,1\}$ as a truth table of length $n=2^{m}$
- Decide: Does f have a circuit of size at most $s(m)$?
$\operatorname{MCSP}[s(m)] \in$ NP; solvable in $n \cdot 2^{\tilde{o}(s(m))}$ time.

We believe MCSP $\left[m^{10}\right] \notin \mathbf{P} /$ poly
(otherwise, no strong PRGs exist [Razborov-Rudich])

Minimum Circuit Size Problem

Problem: $\operatorname{MCSP}[s(m)]$

- Given: $f:\{0,1\}^{m} \rightarrow\{0,1\}$ as a truth table of length $n=2^{m}$
- Decide: Does f have a circuit of size at most $s(m)$?
$\operatorname{MCSP}[s(m)] \in$ NP; solvable in $n \cdot 2^{\tilde{o}(s(m))}$ time.

We believe MCSP $\left[m^{10}\right] \notin \mathbf{P} /$ poly!
(otherwise, no strong PRGs exist [Razborov-Rudich])
If MCSP $\left[m^{10}\right]$ doesn't have circuits of $n \cdot \operatorname{polylog} n$ size and polylog n depth, then NP $\not \subset \mathbf{P} /$ poly.
(McKay-Murray-Williams'19)

Minimum Circuit Size Problem

Problem: $\operatorname{MCSP}[s(m)]$

- Given: $f:\{0,1\}^{m} \rightarrow\{0,1\}$ as a truth table of length $n=2^{m}$
- Decide: Does f have a circuit of size at most $s(m)$?
$\operatorname{MCSP}[s(m)] \in$ NP; solvable in $n \cdot 2^{\tilde{o}(s(m))}$ time.

We believe MCSP $\left[m^{10}\right] \notin \mathbf{P} /$ poly!
(otherwise, no strong PRGs exist [Razborov-Rudich])
If MCSP $\left[m^{10}\right]$ doesn't have circuits of $n \cdot$ polylog n size and polylog n depth, then NP $\not \subset \mathbf{P} /$ poly.
(McKay-Murray-Williams'19)
"Hardness Magnification"

Hardness Magnification for MCSP

(Input length $n=2^{m}$)
If MCSP $\left[m^{10}\right]$ doesn't have circuits of $n \cdot$ polylog n size and polylog n depth, then $\mathbf{N P} \not \subset \mathbf{P} /$ poly .
(McKay-Murray-Williams'19)
Similar magnification results for MKtP (Minimum time-bounded Kolmogorov Complexity, $\operatorname{Kt}(x)$)

Hardness Magnification for MCSP

(Input length $n=2^{m}$)
If MCSP $\left[m^{10}\right]$ doesn't have circuits of $n \cdot$ polylog n size and polylog n depth, then $\mathbf{N P} \not \subset \mathbf{P} / \mathbf{p o l y}$.
(McKay-Murray-Williams'19)
Similar magnification results for MKtP (Minimum time-bounded Kolmogorov Complexity, $\operatorname{Kt}(x)$)
$\mathrm{Kt}(\mathrm{x})=$ "measure of how much info needed to generate x quickly" MKtP \approx MCSP with "EXP-oracle gates"

Hardness Magnification for MCSP

(Input length $n=2^{m}$)
If MCSP $\left[m^{10}\right]$ doesn't have circuits of $n \cdot$ polylog n size and polylog n depth, then $\mathbf{N P} \not \subset \mathbf{P} / \mathbf{p o l y}$.
(McKay-Murray-Williams'19)
Similar magnification results for MKtP (Minimum time-bounded Kolmogorov Complexity, $\operatorname{Kt}(x)$)
$\mathrm{Kt}(\mathrm{x})=$ "measure of how much info needed to generate x quickly" MKtP \approx MCSP with "EXP-oracle gates"
("Gap-MKtP[a, b]": distinguish between $\operatorname{Kt}(x) \leq a$ and $\operatorname{Kt}(x) \geq b$) If Gap-MKtP $\left[m^{10}, m^{10}+O(m)\right]$ doesn't have n^{3} polylog n-size (De Morgan) Formulas, then EXP $\not \subset \mathbf{N C}^{1}$.
(Oliveira-Pich-Santhanam'19)

Hardness Magnification for MCSP

(Input length $n=2^{m}$)
If MCSP $\left[m^{10}\right]$ doesn't have circuits of $n \cdot$ polylog n size and polylog n depth, then $\mathbf{N P} \not \subset \mathbf{P} /$ poly.
(McKay-Murray-Williams'19)
Similar magnification results for MKtP (Minimum time-bounded Kolmogorov Complexity, $\operatorname{Kt}(x)$)
$\mathrm{Kt}(\mathrm{x})=$ "measure of how much info needed to generate x quickly"

("Gap-MKtP
If Gap-MKth
(De Morgan
Average-case MCSP [OS'18] $\quad \geq b$)
k-Vertex-Cover [OS'18] low-depth circuit LBs for NC^{1} [AK'10,CT' 19$]$ sublinear-depth circuit LBs for \mathbf{P} [LW'13]

How to view Hardness Magnification?

Suggests new approaches to proving strong lower bounds?

Weak LB

Magnification

Strong LB

How to view Hardness Magnification?

Suggests new approaches to proving strong lower bounds?

Weak LB

Magnification

Strong LB

It is argued that HM can bypass the Natural Proof Barrier [Razborov-Rudich]

How to view Hardness Magnification?

Suggests new approaches to proving strong lower bounds?

Weak LB

Magnification

Strong LB

It is argued that HM can bypass the Natural Proof Barrier [Razborov-Rudich]

- A heuristic argument [AK'10, OS'18]: HM seems to yield strong LBs only for certain functions, not for most of them (violating the "largeness" condition of Natural Proofs)

How to view Hardness Magnification?

Suggests new approaches to proving strong lower bounds?

Weak LB

Magnification

Strong LB

It is argued that HM can bypass the Natural Proof Barrier [Razborov-Rudich]

- A heuristic argument [AK'10, OS'18]: HM seems to yield strong LBs only for certain functions, not for most of them (violating the "largeness" condition of Natural Proofs)
- A real theorem [CHOPRS to appear in ITCS'20] In some cases, the required weak LB actually implies the non-existence of natural proofs

Extending Known Lower Bounds?

(Input length $n=2^{m}$)
If Gap-MKtP $\left[m^{10}, m^{10}+O(m)\right]$

- doesn't have n^{3} polylog n-size (De Morgan) Formulas, then EXP $\not \subset \mathbf{N C}^{1}$.
[OPS'19]

Extending Known Lower Bounds?

(Input length $n=2^{m}$)
If Gap-MKtP[$\left.m^{10}, m^{10}+O(m)\right]$

- doesn't have n^{3} polylog n-size (De Morgan) Formulas, then EXP $\not \subset \mathrm{NC}^{1}$.

We know how to prove $n^{1.99}$-size formula lower bound for Gap-MKtP! [OPS'19]

Extending Known Lower Bounds?

(Input length $n=2^{m}$)
If Gap-MKtP[$\left.m^{10}, m^{10}+O(m)\right]$

- doesn't have n^{3} polylog n-size (De Morgan) Formulas, then EXP $\not \subset \mathbf{N C}^{1}$.
[OPS'19]
We know how to prove $n^{1.99}$-size formula lower bound for Gap-MKtP ! [OPS'19]

Can we improve it by a factor of $n^{1+\varepsilon}$?

Extending Known Lower Bounds?

(Input length $n=2^{m}$)
If Gap-MKtP $\left[m^{10}, m^{10}+O(m)\right]$

- doesn't have n^{3} polylog n-size (De Morgan) Formulas, then EXP $\not \subset \mathrm{NC}^{1}$.
- doesn't have $n \cdot$ polylog n-size Formula- \oplus, then EXP $\not \subset \mathbf{N C}^{1}$.

Extending Known Lower Bounds?

(Input length $n=2^{m}$)
If Gap-MKtP $\left[m^{10}, m^{10}+O(m)\right]$

- doesn't have n^{3} polylog n-size (De Morgan) Formulas, then EXP $\not \subset \mathrm{NC}^{1}$.
- doesn't have $n \cdot$ polylog n-size Formula- \oplus, then EXP $\not \subset \mathbf{N C}^{1}$.

Known LB against Formula- \oplus (Tal'16) : \mathbf{F}_{2}-Inner-Product \notin Formula- $\oplus\left[n^{2} /\right.$ polylog $\left.n\right]$

Extending Known Lower Bounds?

(Input length $n=2^{m}$)
If Gap-MKtP $\left[m^{10}, m^{10}+O(m)\right]$

- doesn't have n^{3} polylog n-size (De Morgan) Formulas, then

EXP $\not \subset \mathrm{NC}^{1}$.

- doesn't have $n \cdot$ polylog n-size Formula- \oplus, then EXP $\not \subset \mathbf{N C}^{1}$.

Known LB against Formula- \oplus (Tal'16) : \mathbf{F}_{2}-Inner-Product \notin Formula- $\oplus\left[n^{2} /\right.$ polylog $\left.n\right]$

Much easier than Gap-MKtP??!

Extending Known Lower Bounds?

(Input length $n=2^{m}$)
If Gap-MKtP $\left[m^{10}, m^{10}+O(m)\right]$

- doesn't have n^{3} polylog n-size (De Morgan) Formulas, then

EXP $\not \subset \mathrm{NC}^{1}$.

- doesn't have $n \cdot$ polylog n-size Formula- \oplus, then EXP $\not \subset \mathbf{N C}^{1}$.

Known LB against Formula- \oplus (Tal'16) : \mathbf{F}_{2}-Inner-Product \notin Formula- $\oplus\left[n^{2} /\right.$ polylog $\left.n\right]$

Much easier than Gap-MKtP??!

Can we adapt the proof techniques to Gap-MKtP?

How to view Hardness Magnification?

Suggests new approaches to proving strong lower bounds?

Weak LB

Indicates proving
"weak" lower bounds are even harder than previously thought??

Magnification

Strong LB

How to view Hardness Magnification?

Suggests new approaches to proving strong lower bounds?

Weak LB

Indicates proving "weak" lower bounds are even harder than previously thought??

Strong LB

- Hardness magnification:

Proving almost-linear size lower bounds is already as hard as proving super-polynomial lower bounds...

(Input length $n=2^{m}$)

If MCSP[m^{10}] doesn't have circuits of $n \cdot \operatorname{polylog} n$ size and polylog n depth, then NP $\not \subset \mathbf{P} /$ poly.
If Gap-MKtP $\left[m^{10}, m^{10}+O(m)\right]$

- doesn't have n^{3} polylog n-size (De Morgan) Formula, then EXP $\not \subset \mathbf{N C}^{\mathbf{1}}$.
- doesn't have $n \cdot$ polylog n-size Formula- \oplus, then EXP $\not \subset \mathbf{N C}^{\mathbf{1}}$.

What is special about MCSP and MKtP? Is it because they are "compression" problems?

Problem: MCSP[$s(m)]$

- Given: $f:\{0,1\}^{m} \rightarrow\{0,1\}$ as a truth table of length $n=2^{m}$
- Decide: Does f have a circuit of size at most $s(m)$?

(Input length $n=2^{m}$)

If MCSP $\left[m^{10}\right]$ doesn't have circuits of $n \cdot \operatorname{polylog} n$ size and polylog n depth, then NP $\not \subset \mathbf{P} /$ poly.
If Gap-MKtP $\left[m^{10}, m^{10}+O(m)\right]$

- doesn't have n^{3} polylog n-size (De Morgan) Formula, then EXP $\not \subset \mathbf{N C}^{\mathbf{1}}$.
- doesn't have $n \cdot$ polylog n-size Formula- \oplus, then EXP $\not \subset \mathbf{N C}^{\mathbf{1}}$.

What is special about MCSP and MKtP? Is it because they are "compression" problems?

Observation: MCSP[$\left.m^{10}\right]$ and $\operatorname{MKtP}\left[m^{10}\right]$ are sparse languages!

$\operatorname{MCSP}[s(m)]$ is $2^{\tilde{o}(s(m))}$-sparse; there are at most $2^{\tilde{o}(s(m))}$ many circuits!

Problem: MCSP[$s(m)]$

- Given: $f:\{0,1\}^{m} \rightarrow\{0,1\}$ as a truth table of length $n=2^{m}$
- Decide: Does f have a circuit of size at most $s(m)$?

(Input length $n=2^{m}$)

If MCSP $\left[m^{10}\right]$ doesn't have circuits of $n \cdot \operatorname{polylog} n$ size and polylog n depth, then $\mathbf{N P} \not \subset \mathbf{P} /$ poly.
If Gap-MKtP $\left[m^{10}, m^{10}+O(m)\right]$

- doesn't have n^{3} polylog n-size (De Morgan) Formula, then EXP $\not \subset \mathbf{N C}^{\mathbf{1}}$.
- doesn't have $n \cdot$ polylog n-size Formula- \oplus, then EXP $\not \subset \mathbf{N C}^{\mathbf{1}}$.

What is special about MCSP and MKtP? Is it because they are "compression" problems?

Observation: MCSP $\left[m^{10}\right]$ and $\operatorname{MKtP}\left[m^{10}\right]$ are sparse languages!
$\operatorname{MCSP}[s(m)]$ is $2^{\tilde{o}(s(m))}$-sparse; there are at most $2^{\tilde{o}(s(m))}$ many circuits!
Our result: Hardness magnification holds for all sparse NP languages!

HM for all sparse NP languages

Theorem 1:

Let L be any $2^{n^{o(1)}}$-sparse NP language.

- If L doesn't have $\boldsymbol{n}^{\mathbf{1 . 0 1}}$-size circuits, then for all $\boldsymbol{k}, \mathbf{N P} \not \subset \operatorname{SIZE}\left[\boldsymbol{n}^{\boldsymbol{k}}\right]$.

HM for all sparse NP languages

Theorem 1:

Let L be any $2^{n^{o(1)}}$-sparse NP language.

- If L doesn't have $\boldsymbol{n}^{\mathbf{1 . 0 1}}$-size circuits, then for all $\boldsymbol{k}, \mathbf{N P} \not \subset \operatorname{SIZE}\left[\boldsymbol{n}^{\boldsymbol{k}}\right]$.
- If L doesn't have $n^{3.01}$-size formulas, then for all k, NP doesn't have n^{k}-size formulas.
. If L doesn't have $n^{2.01}$-size branching programs, then for all k, NP doesn't have n^{k}-size branching programs.

Similar results for other models!

HM for all sparse NP languages

Theorem 1:

Let L be any $2^{n^{o(1)}}$-sparse NP language.

- If L doesn't have $\boldsymbol{n}^{\mathbf{1 . 0 1}}$-size circuits, then for all $\boldsymbol{k}, \mathrm{NP} \not \subset \operatorname{SIZE}\left[\boldsymbol{n}^{\boldsymbol{k}}\right]$.
- If L doesn't have $n^{3.01}$-size formulas, then for all k, NP doesn't have n^{k}-size formulas.
- If L doesn't have $n^{2.01}$-size branching programs, then for all k, NP doesn't have n^{k}-size branching programs.

Similar results for other models!
Compared with [MMW'19]: Our techniques yield weaker consequences (e.g. they get NP $\not \subset \mathbf{P} /$ poly), but apply to more restricted models.

HM for all sparse NP languages

Theorem 1:

Let L be any $2^{n^{o(1)}}$-sparse NP language.

- If L doesn't have $\boldsymbol{n}^{\mathbf{1 . 0 1}}$-size circuits, then for all $\boldsymbol{k}, \mathrm{NP} \not \subset \operatorname{SIZE}\left[\boldsymbol{n}^{\boldsymbol{k}}\right]$.
- If L doesn't have $n^{3.01}$-size formulas, then for all \boldsymbol{k}, NP doesn't have \boldsymbol{n}^{k}-size formulas.
- If L doesn't have $n^{2.01}$-size branching programs, then for all k, NP doesn't have n^{k}-size branching programs.

Similar results for other models!
Compared with [MMW'19]: Our techniques yield weaker consequences (e.g. they get NP $\not \subset \mathbf{P} /$ poly), but apply to more restricted models.
(Best known formula LB: $\boldsymbol{n}^{\mathbf{3}} / \boldsymbol{p o l y l o g} \boldsymbol{n}$) [Håstad 90s, Tal]
(Best known branching program LB: $n^{2} / \operatorname{polylog} n$) [Nečiporuk 60s]

Hardness Magnification for MCSP

(Input length $n=2^{m}$)

Theorem 2:

If MCSP $\left[m^{10}\right]$ doesn't have n^{3} polylog n-size (De Morgan) Formulas, then PSPACE $\not \subset$ (nonuniform) NC ${ }^{\mathbf{1}}$.

Similar results for other models!

Hardness Magnification for MCSP

(Input length $n=2^{m}$)

Theorem 2:

If MCSP $\left[m^{10}\right]$ doesn't have n^{3} polylog n-size (De Morgan) Formulas, then PSPACE $\not \subset$ (nonuniform) NC ${ }^{\mathbf{1}}$.

Similar results for other models!
Best MCSP lower bound (Cheraghchi-Kabanets-Lu-Myrisiotis'19) : MCSP $\left[2^{m} / 10 m\right]$ requires $n^{3-o(1)}$-size formulas.
(doesn't work for $m^{10} \ldots$)

Hardness Magnification for MCSP

(Input length $n=2^{m}$)

Theorem 2:

If MCSP $\left[m^{10}\right]$ doesn't have n^{3} polylog n-size (De Morgan) Formulas, then PSPACE $\not \subset$ (nonuniform) NC ${ }^{\mathbf{1}}$.

Similar results for other models!
Best MCSP lower bound (Cheraghchi-Kabanets-Lu-Myrisiotis'19) : MCSP $\left[2^{m} / 10 m\right]$ requires $n^{3-o(1)}$-size formulas. (doesn't work for $m^{10} \ldots$)

Similar results for MKtP $\left[m^{10}\right]$ and $\mathbf{E X P} \not \subset \mathbf{N C}^{\mathbf{1}}$ (improving upon [OPS'19] which required lower bounds for Gap-MKtP)

Algorithms with small non-uniformity

Theorem 3:

Let L be a $2^{n^{o(1)}}$-sparse NP language not computable by an $n^{1.01}$-time $n^{0.01}$-space deterministic algorithm with $n^{0.01}$ bits of advice, then NP $\not \subset \operatorname{SIZE}\left[n^{k}\right]$ for all k.

Algorithms with small non-uniformity

Theorem 3:

Let L be a $2^{n^{o(1)}}$-sparse NP language not computable by an $n^{1.01}$-time $n^{0.01}$-space deterministic algorithm with $\boldsymbol{n}^{0.01}$ bits of advice, then NP $\not \subset \operatorname{SIZE}\left[n^{k}\right]$ for all k.

The hypothesis is "close" to what we can prove!
There is a $\left(2^{n^{0.01}} \cdot \boldsymbol{n}\right)$-sparse language $L \in \operatorname{DTIME}\left[\widetilde{O}\left(n^{1.01}\right)\right]$, not computable by an $\boldsymbol{n}^{1.01}$-time deterministic algorithm with $n^{0.01}$ bits of advice.
(Adaptation of time hierarchy theorem)

Algorithms with small non-uniformity

Theorem 3:

Let L be a $2^{n^{o(1)}}$-sparse NP language not computable by an $n^{1.01}$-time $n^{0.01}$-space deterministic algorithm with $\boldsymbol{n}^{0.01}$ bits of advice, then NP $\not \subset \operatorname{SIZE}\left[n^{k}\right]$ for all k.

The hypothesis is "close" to what we can prove!
There is a $\left(2^{n^{0.01}} \cdot \boldsymbol{n}\right)$-sparse language $L \in \operatorname{DTIME}\left[\widetilde{O}\left(n^{1.01}\right)\right]$, not computable by an $\boldsymbol{n}^{1.01}$-time deterministic algorithm with $n^{0.01}$ bits of advice.
(Adaptation of time hierarchy theorem)
Can we make it sparser?

Proof of Theorem 1.2

Let L be any $2^{n^{o(1)}}$-sparse NP language.

- If L doesn't have $\boldsymbol{n}^{3.01}$-size formulas, then for every \boldsymbol{k}, NP doesn't have $\boldsymbol{n}^{\boldsymbol{k}}$-size formulas.

Proof of Theorem 1.2

Assume: NP has n^{k}-size formulas for some k.
Goal: Design $n^{3.01}$-size formulas for $2^{n^{o(1)}}$-sparse NP language L.

Intuition

Assume: NP has n^{k}-size formulas for some k.
Goal: Design $n^{3.01}$-size formulas for $2^{n^{o(1)}}$-sparse NP language L.

(Sparse) $L \cap\{0,1\}^{n}$

Intuition

Assume: NP has n^{k}-size formulas for some k.
Goal: Design $n^{3.01}$-size formulas for $2^{n^{o(1)}}$-sparse NP language L.

(Dense) Auxiliary NP language $K \cap\{0,1\}^{n^{0.001 / k}}$ ("kernel problem")

Intuition

Assume: NP has n^{k}-size formulas for some k.
Goal: Design $n^{3.01}$-size formulas for $2^{n^{o(1)}}$-sparse NP language L.

(Dense) Auxiliary NP language $K \cap\{0,1\}^{n^{0.001 / k}}$ ("kernel problem")

Proof of Theorem 1.2

Assume: NP has n^{k}-size formulas for some k.
Goal: Design $n^{3.01}$-size formulas for $2^{n^{o(1)}}$-sparse NP language L.
Set $t:=\boldsymbol{n}^{\mathbf{0 . 0 0 1} / \boldsymbol{k}}>\log ($ Sparsity of $L)$.
Standard hashing tricks imply:
There is a hash function $H_{s}:\{0,1\}^{n} \rightarrow\{0,1\}^{O(t)}$ that is

- Perfect: maps YES-instances of L into distinct images
- described by an $O(t)$-bit seed s
- linear over \mathbf{F}_{2}
(there is a "correct" seed s that makes the hash function H_{s} perfect)

Proof of Theorem 1.2

Assume: NP has n^{k}-size formulas for some k.
Goal: Design $n^{3.01}$-size formulas for $2^{n^{o(1)}}$-sparse NP language L.
Set $t:=\boldsymbol{n}^{\mathbf{0 . 0 0 1} / \boldsymbol{k}}>\log ($ Sparsity of $L)$.
Standard hashing tricks imply:
There is a hash function $H_{s}:\{0,1\}^{n} \rightarrow\{0,1\}^{O(t)}$ that is

- Perfect: maps YES-ins ${ }^{\text {tances }}$ of L into distinct images
- described by an $O(t)-\mathrm{b}$
- linear over \mathbf{F}_{2}
(Construction: pick some coordinates from the Error Correcting Code)

Proof of Theorem 1.2

Assume: NP has n^{k}-size formulas for some k. Goal: Design $n^{3.01}$-size formulas for $2^{n^{o(1)}}$-sparse NP language L.
$\left(t:=n^{0.001 / k}>\log (\right.$ Sparsity of $\left.L)\right)$
(Perfect hash $H_{s}:\{0,1\}^{n} \rightarrow\{0,1\}^{O(t)}$ with seed $|s|=O(t)$)
Define an $O(t)$-input auxiliary NP problem K ("kernel problem"):
Input: Hash seed s, hash value h, index $i \in[n]$
Output: The i-th bit of some $x \in L$ such that $H_{s}(x)=h$.
For the "correct" s, this x is unique

Proof of Theorem 1.2

Assume: NP has n^{k}-size formulas for some k. Goal: Design $n^{3.01}$-size formulas for $2^{n^{o(1)}}$-sparse NP language L.
$\left(t:=n^{0.001 / k}>\log (\right.$ Sparsity of $\left.L)\right)$
(Perfect hash $H_{s}:\{0,1\}^{n} \rightarrow\{0,1\}^{o(t)}$ with seed $\left.|s|=O(t)\right)$
Define an $O(t)$-input auxiliary NP problem K ("kernel problem"):
Input: Hash seed s, hash value h, index $i \in[n]$ Output: The i-th bit of some $x \in L$ such that $H_{s}(x)=h$.
$\mathbf{N P}$ has n^{k}-size formulas $\Rightarrow K$ has formulas of size $n^{0.001}$!

Proof of Theorem 1.2

Assume: NP has n^{k}-size formulas for some k.
Goal: Design $n^{3.01}$-size formulas for $2^{n^{o(1)}}$-sparse NP language L.
$\left(t:=n^{0.001 / k}>\log (\right.$ Sparsity of $\left.L)\right)$
(Perfect hash $H_{s}:\{0,1\}^{n} \rightarrow\{0,1\}^{O(t)}$ with seed $|s|=O(t)$)
Define an $O(t)$-input auxiliary NP problem K ("kernel problem"):
Input: Hash seed s, hash value h, index $i \in[n]$ Output: The i-th bit of some $x \in L$ such that $H_{s}(x)=h$.

NP has n^{k}-size formulas $\Rightarrow K$ has formulas of size $n^{0.001}$! On input (s, h, i), guess (x, y), where y witnesses $x \in L$. Accept $\Leftrightarrow x_{i}=1$ and $H_{s}(x)=h$.

Proof of Theorem 1.2

Assume: NP has n^{k}-size formulas for some k.
Goal: Design $n^{3.01}$-size formulas for $2^{n^{o(1)}}$-sparse NP language L.
$\left(t:=n^{0.001 / k}>\log (\right.$ Sparsity of $\left.L)\right)$
(Perfect hash $H_{s}:\{0,1\}^{n} \rightarrow\{0,1\}^{O(t)}$ with seed $|s|=O(t)$)
Define an $O(t)$-input auxiliary NP problem K ("kernel problem"):
Input: Hash seed s, hash value h, index $i \in[n]$ Output: The i-th bit of some $x \in L$ such that $H_{s}(x)=h$.

Claim: for the "correct" s, the following decides L :
On input $x \in\{0,1\}^{n}$, accept iff:

$$
\forall i \in[n], K\left(s, H_{s}(x), i\right)=x_{i}
$$

Goal: Design $n^{3.01}$-size formulas for $2^{n^{o(1)}}$-sparse NP language L.
On input $x \in\{0,1\}^{n}$, accept iff:

$$
\forall i \in[n], K\left(s, H_{s}(x), i\right)=x_{i}
$$

Goal: Design $n^{3.01}$-size formulas for $2^{n^{o(1)}}$-sparse $\mathbf{N P}$ language L.
On input $x \in\{0,1\}^{n}$, accept iff:

$$
\forall i \in[n], K\left(s, H_{s}(x), i\right)=x_{i}
$$

$$
K: n^{0.001} \text {-size }
$$

Hash seed s

AND

hardwired into formulas
x_{1}
$s \quad H_{s}(x) \quad 1$

Goal: Design $n^{3.01}$-size formulas for $2^{n^{o(1)}}$-sparse $\mathbf{N P}$ language L.
On input $x \in\{0,1\}^{n}$, accept iff:

$$
\forall i \in[n], K\left(s, H_{s}(x), i\right)=x_{i}
$$

$$
K: n^{0.001} \text {-size }
$$

Hash seed s
hardwired into formulas

Each bit of $H_{s}(x)$ is an XOR function (implemented by De Morgan formulas of size $O\left(n^{2}\right)$)

Goal: Design $n^{3.01}$-size formulas for $2^{n^{o(1)}}$-sparse $\mathbf{N P}$ language L.
On input $x \in\{0,1\}^{n}$, accept iff:

$$
\forall i \in[n], K\left(s, H_{s}(x), i\right)=x_{i}
$$

$$
K: n^{0.001} \text {-size }
$$

Hash seed s
hardwired into formulas

Each bit of $H_{s}(x)$ is an XOR function (implemented by De Morgan formulas of size $O\left(n^{2}\right)$)
x_{1}
s $\quad H_{s}(x) \quad 1$

Total size $n \cdot n^{0.001} \cdot O\left(n^{2}\right)$

Open Problems

- Are there any other natural sparse NP languages for which one can prove some concrete lower bounds?

Open Problems

- Are there any other natural sparse NP languages for which one can prove some concrete lower bounds?
- Is it possible to show hardness magnification results for "denser" variants of MCSP or MKtP, such as $\operatorname{MCSP}\left[2^{m} / m^{3}\right]$?

Open Problems

- Are there any other natural sparse NP languages for which one can prove some concrete lower bounds?
- Is it possible to show hardness magnification results for "denser" variants of MCSP or MKtP, such as $\operatorname{MCSP}\left[2^{m} / m^{3}\right]$?

Thank you!

