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Problem: MCSP[𝑠 𝑚 ]
·Given: 𝑓: {0,1}𝑚 → {0,1} as a truth table of length 𝑛 = 2𝑚

·Decide: Does 𝑓 have a circuit of size at most 𝑠(𝑚)?

Minimum Circuit Size Problem
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MCSP 𝑠 𝑚 ∈ 𝐍𝐏; solvable in 𝑛 ⋅ 2 ෨𝑂 𝑠 𝑚 time.



We believe MCSP[𝑚10] ∉ 𝐏/𝐩𝐨𝐥𝐲!

(otherwise, no strong PRGs exist [Razborov-Rudich])
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Hardness Magnification for MCSP

(Other Hardness Magnification Results)
𝑛1−𝜀-approximate Clique [Sri’03]

Average-case MCSP [OS’18]

𝑘-Vertex-Cover [OS’18]

low-depth circuit LBs for 𝐍𝐂𝟏 [AK’10,CT’19]

sublinear-depth circuit LBs for 𝐏 [LW’13]

…
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• A heuristic argument [AK’10, OS’18]: HM seems to yield strong 
LBs only for certain functions, not for most of them 
(violating the “largeness” condition of Natural Proofs)

• A real theorem [CHOPRS to appear in ITCS’20] 
In some cases, the required weak LB actually implies the 
non-existence of natural proofs
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Extending Known Lower Bounds?

(Input length 𝑛 = 2𝑚)

If Gap-MKtP 𝑚10, 𝑚10 + 𝑂(𝑚)
· doesn’t have 𝑛3polylog 𝑛-size (De Morgan) Formulas, then 

𝐄𝐗𝐏 ⊄ 𝐍𝐂𝟏.

· doesn’t have 𝑛 ⋅ polylog 𝑛-size Formula-⊕, then 𝐄𝐗𝐏 ⊄ 𝐍𝐂𝟏. 

[OPS’19]
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Formula-⊕: De Morgan Formulas 

where each leaf node computes 

XOR of a subset of input bits

[OPS’19]
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Can we adapt the proof techniques to Gap-MKtP?

(Input length 𝑛 = 2𝑚)

If Gap-MKtP 𝑚10, 𝑚10 + 𝑂(𝑚)
· doesn’t have 𝑛3polylog 𝑛-size (De Morgan) Formulas, then 

𝐄𝐗𝐏 ⊄ 𝐍𝐂𝟏.

· doesn’t have 𝑛 ⋅ polylog 𝑛-size Formula-⊕, then 𝐄𝐗𝐏 ⊄ 𝐍𝐂𝟏. 

Stronger LB than required

Extending Known Lower Bounds?



Weak LB

Strong LB

Magnification

Indicates proving 

“weak” lower bounds 

are even harder than 

previously thought??

Suggests new 

approaches to 

proving strong 

lower bounds?

How to view Hardness Magnification?



Weak LB

Strong LB

Magnification

Indicates proving 

“weak” lower bounds 

are even harder than 

previously thought??

Suggests new 

approaches to 

proving strong 

lower bounds?

•Hardness magnification: 

Proving almost-linear size lower bounds is 
already as hard as proving 
super-polynomial lower bounds…

How to view Hardness Magnification?



What is special about MCSP and MKtP?

Is it because they are “compression” problems?

(Input length 𝑛 = 2𝑚)

If MCSP[𝑚10] doesn’t have circuits of 𝑛 ⋅ polylog 𝑛 size and polylog 𝑛
depth, then 𝐍𝐏 ⊄ 𝐏/𝐩𝐨𝐥𝐲. 

If Gap-MKtP 𝑚10, 𝑚10 + 𝑂(𝑚)
· doesn’t have 𝑛3polylog 𝑛-size (De Morgan) Formula, then 𝐄𝐗𝐏 ⊄ 𝐍𝐂𝟏.

· doesn’t have 𝑛 ⋅ polylog 𝑛-size Formula-⊕, then 𝐄𝐗𝐏 ⊄ 𝐍𝐂𝟏. 

Problem: MCSP[𝑠 𝑚 ]
·Given: 𝑓: {0,1}𝑚 → {0,1} as a truth table of length 𝑛 = 2𝑚

·Decide: Does 𝑓 have a circuit of size at most 𝑠(𝑚)?
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Our result: Hardness magnification holds for 

all sparse 𝐍𝐏 languages!

(Input length 𝑛 = 2𝑚)

If MCSP[𝑚10] doesn’t have circuits of 𝑛 ⋅ polylog 𝑛 size and polylog 𝑛
depth, then 𝐍𝐏 ⊄ 𝐏/𝐩𝐨𝐥𝐲. 

If Gap-MKtP 𝑚10, 𝑚10 + 𝑂(𝑚)
· doesn’t have 𝑛3polylog 𝑛-size (De Morgan) Formula, then 𝐄𝐗𝐏 ⊄ 𝐍𝐂𝟏.

· doesn’t have 𝑛 ⋅ polylog 𝑛-size Formula-⊕, then 𝐄𝐗𝐏 ⊄ 𝐍𝐂𝟏. 

Observation: MCSP[𝑚10] and MKtP[𝑚10]

are sparse languages!

What is special about MCSP and MKtP?

Is it because they are “compression” problems?

MCSP 𝑠(𝑚) is 2 ෨𝑂 𝑠(𝑚) -sparse; 

there are at most 2 ෨𝑂 𝑠(𝑚) many circuits!



HM for all sparse NP languages

Let 𝐿 be any 2𝑛
𝑜 1

-sparse 𝐍𝐏 language. 

· If 𝐿 doesn’t have 𝒏𝟏.𝟎𝟏-size circuits, then for all 𝒌, 𝐍𝐏 ⊄ 𝐒𝐈𝐙𝐄 𝒏𝒌 .
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for all 𝒌, 𝐍𝐏 doesn’t have 𝒏𝒌-size formulas.

· If 𝐿 doesn’t have 𝒏𝟐.𝟎𝟏-size branching programs, then

for all 𝒌, 𝐍𝐏 doesn’t have 𝒏𝒌-size branching programs.

Theorem 1:
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Compared with [MMW’19]: Our techniques yield weaker 

consequences (e.g. they get 𝐍𝐏 ⊄ 𝐏/𝐩𝐨𝐥𝐲), but apply to more 

restricted models.
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for all 𝒌, 𝐍𝐏 doesn’t have 𝒏𝒌-size branching programs.

Theorem 1:

Compared with [MMW’19]: Our techniques yield weaker 

consequences (e.g. they get 𝐍𝐏 ⊄ 𝐏/𝐩𝐨𝐥𝐲), but apply to more 

restricted models.

(Best known formula LB: 𝒏𝟑/𝐩𝐨𝐥𝐲𝐥𝐨𝐠 𝒏) [Håstad 90s, Tal]

(Best known branching program LB: 𝒏𝟐/𝐩𝐨𝐥𝐲𝐥𝐨𝐠 𝒏) [Nečiporuk 60s] 
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Hardness Magnification for MCSP

If MCSP 𝑚10 doesn’t have 𝑛3polylog 𝑛-size (De Morgan) 

Formulas, then 𝐏𝐒𝐏𝐀𝐂𝐄 ⊄ (nonuniform) 𝐍𝐂𝟏.



Theorem 2:

(Input length 𝑛 = 2𝑚)

Similar results for other models!

Hardness Magnification for MCSP

If MCSP 𝑚10 doesn’t have 𝑛3polylog 𝑛-size (De Morgan) 

Formulas, then 𝐏𝐒𝐏𝐀𝐂𝐄 ⊄ (nonuniform) 𝐍𝐂𝟏.

Best MCSP lower bound (Cheraghchi-Kabanets-Lu-Myrisiotis’19) :

MCSP[2𝑚/10𝑚] requires 𝑛3−𝑜 1 -size formulas. 

(doesn’t work for 𝑚10…)



Theorem 2:

Similar results for MKtP 𝑚10 and 𝐄𝐗𝐏 ⊄ 𝐍𝐂𝟏 (improving upon 
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formulas for 𝐿, with oracle 

access to 𝐾.
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Thank you!


