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Problem: MCSP[𝑠 𝑚 ]
·Given: 𝑓: {0,1}𝑚 → {0,1} as a truth table of length 𝑛 = 2𝑚

·Decide: Does 𝑓 have a circuit of size at most 𝑠(𝑚)?

Minimum Circuit Size Problem
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MCSP 𝑠 𝑚 ∈ 𝐍𝐏; solvable in 𝑛 ⋅ 2 ෨𝑂 𝑠 𝑚 time.



We believe MCSP[𝑚10] ∉ 𝐏/𝐩𝐨𝐥𝐲!

(otherwise, no strong PRGs exist [Razborov-Rudich])
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Hardness Magnification for MCSP

(Other Hardness Magnification Results)
𝑛1−𝜀-approximate Clique [Sri’03]

Average-case MCSP [OS’18]

𝑘-Vertex-Cover [OS’18]

low-depth circuit LBs for 𝐍𝐂𝟏 [AK’10,CT’19]

sublinear-depth circuit LBs for 𝐏 [LW’13]

…
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• A heuristic argument [AK’10, OS’18]: HM seems to yield strong 
LBs only for certain functions, not for most of them 
(violating the “largeness” condition of Natural Proofs)

• A real theorem [CHOPRS to appear in ITCS’20] 
In some cases, the required weak LB actually implies the 
non-existence of natural proofs
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Extending Known Lower Bounds?

(Input length 𝑛 = 2𝑚)

If Gap-MKtP 𝑚10, 𝑚10 + 𝑂(𝑚)
· doesn’t have 𝑛3polylog 𝑛-size (De Morgan) Formulas, then 

𝐄𝐗𝐏 ⊄ 𝐍𝐂𝟏.

· doesn’t have 𝑛 ⋅ polylog 𝑛-size Formula-⊕, then 𝐄𝐗𝐏 ⊄ 𝐍𝐂𝟏. 

[OPS’19]



Extending Known Lower Bounds?

(Input length 𝑛 = 2𝑚)

If Gap-MKtP 𝑚10, 𝑚10 + 𝑂(𝑚)
· doesn’t have 𝑛3polylog 𝑛-size (De Morgan) Formulas, then 

𝐄𝐗𝐏 ⊄ 𝐍𝐂𝟏.

· doesn’t have 𝑛 ⋅ polylog 𝑛-size Formula-⊕, then 𝐄𝐗𝐏 ⊄ 𝐍𝐂𝟏. 
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Formula-⊕: De Morgan Formulas 

where each leaf node computes 

XOR of a subset of input bits

[OPS’19]
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Indicates proving 

“weak” lower bounds 

are even harder than 

previously thought??

Suggests new 

approaches to 

proving strong 

lower bounds?

•Hardness magnification: 

Proving almost-linear size lower bounds is 
already as hard as proving 
super-polynomial lower bounds…

How to view Hardness Magnification?



What is special about MCSP and MKtP?

Is it because they are “compression” problems?

(Input length 𝑛 = 2𝑚)

If MCSP[𝑚10] doesn’t have circuits of 𝑛 ⋅ polylog 𝑛 size and polylog 𝑛
depth, then 𝐍𝐏 ⊄ 𝐏/𝐩𝐨𝐥𝐲. 

If Gap-MKtP 𝑚10, 𝑚10 + 𝑂(𝑚)
· doesn’t have 𝑛3polylog 𝑛-size (De Morgan) Formula, then 𝐄𝐗𝐏 ⊄ 𝐍𝐂𝟏.

· doesn’t have 𝑛 ⋅ polylog 𝑛-size Formula-⊕, then 𝐄𝐗𝐏 ⊄ 𝐍𝐂𝟏. 

Problem: MCSP[𝑠 𝑚 ]
·Given: 𝑓: {0,1}𝑚 → {0,1} as a truth table of length 𝑛 = 2𝑚

·Decide: Does 𝑓 have a circuit of size at most 𝑠(𝑚)?
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HM for all sparse NP languages

Let 𝐿 be any 2𝑛
𝑜 1

-sparse 𝐍𝐏 language. 

· If 𝐿 doesn’t have 𝒏𝟏.𝟎𝟏-size circuits, then for all 𝒌, 𝐍𝐏 ⊄ 𝐒𝐈𝐙𝐄 𝒏𝒌 .
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for all 𝒌, 𝐍𝐏 doesn’t have 𝒏𝒌-size formulas.

· If 𝐿 doesn’t have 𝒏𝟐.𝟎𝟏-size branching programs, then

for all 𝒌, 𝐍𝐏 doesn’t have 𝒏𝒌-size branching programs.

Theorem 1:
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Compared with [MMW’19]: Our techniques yield weaker 

consequences (e.g. they get 𝐍𝐏 ⊄ 𝐏/𝐩𝐨𝐥𝐲), but apply to more 

restricted models.
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for all 𝒌, 𝐍𝐏 doesn’t have 𝒏𝒌-size branching programs.

Theorem 1:

Compared with [MMW’19]: Our techniques yield weaker 

consequences (e.g. they get 𝐍𝐏 ⊄ 𝐏/𝐩𝐨𝐥𝐲), but apply to more 

restricted models.

(Best known formula LB: 𝒏𝟑/𝐩𝐨𝐥𝐲𝐥𝐨𝐠 𝒏) [Håstad 90s, Tal]

(Best known branching program LB: 𝒏𝟐/𝐩𝐨𝐥𝐲𝐥𝐨𝐠 𝒏) [Nečiporuk 60s] 
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Hardness Magnification for MCSP

If MCSP 𝑚10 doesn’t have 𝑛3polylog 𝑛-size (De Morgan) 

Formulas, then 𝐏𝐒𝐏𝐀𝐂𝐄 ⊄ (nonuniform) 𝐍𝐂𝟏.



Theorem 2:

(Input length 𝑛 = 2𝑚)

Similar results for other models!

Hardness Magnification for MCSP

If MCSP 𝑚10 doesn’t have 𝑛3polylog 𝑛-size (De Morgan) 

Formulas, then 𝐏𝐒𝐏𝐀𝐂𝐄 ⊄ (nonuniform) 𝐍𝐂𝟏.

Best MCSP lower bound (Cheraghchi-Kabanets-Lu-Myrisiotis’19) :

MCSP[2𝑚/10𝑚] requires 𝑛3−𝑜 1 -size formulas. 

(doesn’t work for 𝑚10…)



Theorem 2:

Similar results for MKtP 𝑚10 and 𝐄𝐗𝐏 ⊄ 𝐍𝐂𝟏 (improving upon 
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Proof of Theorem 1.2

Assume: 𝐍𝐏 has 𝑛𝑘-size formulas for some 𝑘.

Goal: Design 𝑛3.01-size formulas for 2𝑛
𝑜 1

-sparse 𝐍𝐏 language 𝐿.



Intuition

Assume: 𝐍𝐏 has 𝑛𝑘-size formulas for some 𝑘.

Goal: Design 𝑛3.01-size formulas for 2𝑛
𝑜 1

-sparse 𝐍𝐏 language 𝐿.

N N N N N Y N N N N Y N N Y N N

(Sparse) 𝐿 ∩ {0,1}𝑛

0000 0001 1110 1111…………



Intuition

Assume: 𝐍𝐏 has 𝑛𝑘-size formulas for some 𝑘.

Goal: Design 𝑛3.01-size formulas for 2𝑛
𝑜 1

-sparse 𝐍𝐏 language 𝐿.

N N N N N Y N N N N Y N N Y N N

Y Y N Y

(Sparse) 𝐿 ∩ {0,1}𝑛

(Dense) Auxiliary 𝐍𝐏 language 𝐾 ∩ {0,1}𝑛
0.001/𝑘

(“kernel problem”)

0000 0001 1110 1111…………

00 01 10 11



Intuition

Assume: 𝐍𝐏 has 𝑛𝑘-size formulas for some 𝑘.

Goal: Design 𝑛3.01-size formulas for 2𝑛
𝑜 1

-sparse 𝐍𝐏 language 𝐿.

N N N N N Y N N N N Y N N Y N N

Y Y N Y

(Sparse) 𝐿 ∩ {0,1}𝑛

(Dense) Auxiliary 𝐍𝐏 language 𝐾 ∩ {0,1}𝑛
0.001/𝑘

(“kernel problem”)

0000 0001 1110 1111…………

00 01 10 11

We will construct cubic-size 

formulas for 𝐿, with oracle 

access to 𝐾.
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Thank you!


