Cooperation via Codes in Restricted Hat Guessing Games

Kai Jin (HKUST) *Ce Jin (Tsinghua University)* Zhaoquan Gu (Guangzhou University)

AAMAS 2019

Kai Jin, Ce Jin, Zhaoquan Gu

AAMAS 2019 1 / 18

< ∃ > <

Hat Guessing Games

Hat Guessing Games have been studied extensively in recent years, due to their connections to

- graph entropy
- circuit complexity
- network coding
- auctions
- • •

Hat Guessing Games

Hat Guessing Games have been studied extensively in recent years, due to their connections to

- graph entropy
- circuit complexity
- network coding
- auctions
- • •

There are many variations of the Hat Guessing game.

We study the *unique-supply* rule (which is a restricted version of the "finite-supply rule" [BHKL09]) :

- **(1))) (1))))))**

We study the *unique-supply* rule (which is a restricted version of the "finite-supply rule" [BHKL09]) :

- A cooperative team of *n* players, and *T* hats with *distinct colors* $1, \ldots, T$
- The dealer *uniformly randomly* places k hats to each player, and d hats remain in the dealer's hand. (T = nk + d)
- Each player sees the hats of all other players, but cannot see the hats of his (her) own.

A D A D A D A

(*n* players and *T* distinct hats. Each player gets *k* hats. $d = T - nk \ge 1$ hats remain.)

- Each player guesses k colors. The guess is right iff they exactly match the k colors (s)he receives.
- All players guess simultaneously. No communication is allowed after game starts.

< 回 ト < 三 ト < 三 ト

(*n* players and *T* distinct hats. Each player gets *k* hats. $d = T - nk \ge 1$ hats remain.)

- Each player guesses k colors. The guess is right iff they exactly match the k colors (s)he receives.
- All players guess simultaneously. No communication is allowed after game starts.

Design a cooperative strategy to maximize winning probability.

- 4 同 6 4 日 6 4 日 6

(*n* players and *T* distinct hats. Each player gets *k* hats. $d = T - nk \ge 1$ hats remain.)

- Each player guesses k colors. The guess is right iff they exactly match the k colors (s)he receives.
- All players guess simultaneously. No communication is allowed after game starts.

Design a cooperative strategy to **maximize winning probability.** We consider two winning rules:

- All-right rule: The team wins iff all players are right
- One-right rule: The team wins iff at least one player is right

イロト 不得下 イヨト イヨト 二日

(*n* players and *T* distinct hats. Each player gets *k* hats. $d = T - nk \ge 1$ hats remain.)

A simple observation: The probability that player *i* is right is $1/\binom{k+d}{d}$.

(日) (同) (三) (三)

(*n* players and *T* distinct hats. Each player gets *k* hats. $d = T - nk \ge 1$ hats remain.)

A simple observation: The probability that player *i* is right is $1/\binom{k+d}{d}$.

In All-right rule: winning probability $\leq 1/\binom{k+d}{d}$.

(日) (周) (三) (三)

(*n* players and *T* distinct hats. Each player gets *k* hats. $d = T - nk \ge 1$ hats remain.)

A simple observation: The probability that player *i* is right is $1/\binom{k+d}{d}$.

In All-right rule: winning probability $\leq 1/{\binom{k+d}{d}}$. In One-right rule: winning probability $\geq 1/{\binom{k+d}{d}}$.

(日) (周) (三) (三)

Our contributions

• We present general methods to compute best strategies in both winning rules.

- 4 同 6 4 三 6 4

Our contributions

- We present general methods to compute best strategies in both winning rules.
- We determine the exact value of maximum winning probability for some interesting special cases in the all-right rule, and the general case in the one-right rule.

Our contributions

- We present general methods to compute best strategies in both winning rules.
- We determine the exact value of maximum winning probability for some interesting special cases in the all-right rule, and the general case in the one-right rule.
- Constructing explicit best strategies leads to some interesting combinatorial problems. We will study the *Latin matching*, which arises in one of our constructions.

All-right rule: General Case (n, k, d)

Graph G(n, k, d):

- Nodes: all possible placements
- Edge (v₁, v₂): iff there exists a player who cannot distinguish placements v₁ and v₂.

► < ∃ ►</p>

(Edge (v_1, v_2) iff there exists a player who cannot distinguish placements v_1 and v_2 .)

(Edge (v_1, v_2) iff there exists a player who cannot distinguish placements v_1 and v_2 .)

Theorem: The best winning probability in the all-right winning rule equals $\alpha(G)/|G|$, where $\alpha(G)$ denotes the **maximum independent set** size of G.

(Edge (v_1, v_2) iff there exists a player who cannot distinguish placements v_1 and v_2 .)

Theorem: The best winning probability in the all-right winning rule equals $\alpha(G)/|G|$, where $\alpha(G)$ denotes the **maximum independent set** size of *G*. Example: $\alpha(G(2, 1, 2)) = 4$, implying that optimal strategy has 4/12 = 1/3 winning probability, matching the $1/{\binom{k+d}{d}}$ upper bound.

- 4 同 6 4 日 6 4 日 6

(Edge (v_1, v_2) iff there exists a player who cannot distinguish placements v_1 and v_2 .)

Theorem: The best winning probability in the all-right winning rule equals $\alpha(G)/|G|$, where $\alpha(G)$ denotes the **maximum independent set** size of *G*. Example: $\alpha(G(2,1,2)) = 4$, implying that optimal strategy has 4/12 = 1/3 winning probability, matching the $1/\binom{k+d}{d}$ upper bound. (In some cases the $1/\binom{k+d}{d}$ upper bound is not achievable. Example: (n, k, d) = (4, 1, 3))

(人間) トイヨト イヨト

All-right rule: An Interesting Special Case

(n, k, d) = (n, 1, n - 1) under all-right rule. (total number of hats T = 2n - 1; each of the *n* players gets one hat)

(日) (同) (三) (三)

All-right rule: An Interesting Special Case

(n, k, d) = (n, 1, n - 1) under all-right rule. (total number of hats T = 2n - 1; each of the *n* players gets one hat)

Definition: A Latin matching f satisfies

• $f: {\binom{[2n-1]}{n-1}} \to {\binom{[2n-1]}{n}}$ is a *perfect matching* in the subset lattice, i.e., *S* must be a subset of f(S). And let $f^+(S)$ denote the only element in f(S) - S.

• If S and T differ by exactly one element (i.e., $S = \{x_1, x_2, ..., x_{n-2}, y\}, T = \{x_1, x_2, ..., x_{n-2}, z\}$), then $f^+(S) \neq f^+(T)$.

イロト 不得下 イヨト イヨト 二日

Latin Matching

- $f: \binom{[2n-1]}{n-1} \to \binom{[2n-1]}{n}$ is a perfect matching in the subset lattice, i.e., S must be a subset of f(S). And let $f^+(S)$ denote the only element in f(S) S.
- If S and T differ by exactly one element (i.e., $S = \{x_1, x_2, ..., x_{n-2}, y\}, T = \{x_1, x_2, ..., x_{n-2}, z\})$, then $f^+(S) \neq f^+(T)$.

Example of Latin matchings:

•
$$n = 2$$
: $f(\{1\}) = \{1, 2\}, f(\{2\}) = \{2, 3\}, f(\{3\}) = \{3, 1\}.$

• *n* = 3:

イロト イポト イヨト イヨト 二日

Latin Matching

Example of Latin matching for n = 5:

(Explanation: f is cyclic. Black balls denote S and green ball denotes f(S) - S. $f(\{3, 4, 5, 6\}) = \{3, 4, 5, 6, 9\}, f(\{2, 3, 4, 5\}) = \{2, 3, 4, 5, 8\}$.)

- f: (^[2n-1]_{n-1}) → (^[2n-1]_n) is a perfect matching in the subset lattice, i.e., S must be a subset of f(S). And let f⁺(S) denote the only element in f(S) − S.
- If S and T differ by exactly one element (i.e., $S = \{x_1, x_2, ..., x_{n-2}, y\}, T = \{x_1, x_2, ..., x_{n-2}, z\})$, then $f^+(S) \neq f^+(T)$.

Theorem: If Latin matching f exists for n, then

- G(n, 1, n-1) is *n*-colorable.
- the best winning probability in all-right rule equals 1/n. (matching the $1/\binom{k+d}{d}$ upper bound)

イロト イポト イヨト イヨト 二日

- f: (^[2n-1]_{n-1}) → (^[2n-1]_n) is a perfect matching in the subset lattice, i.e., S must be a subset of f(S). And let f⁺(S) denote the only element in f(S) − S.
- If S and T differ by exactly one element (i.e., $S = \{x_1, x_2, ..., x_{n-2}, y\}, T = \{x_1, x_2, ..., x_{n-2}, z\})$, then $f^+(S) \neq f^+(T)$.

Theorem: If Latin matching f exists for n, then

- G(n, 1, n-1) is *n*-colorable.
- the best winning probability in all-right rule equals 1/n. (matching the $1/\binom{k+d}{d}$ upper bound)

Proof Sketch. For a placement $\mathbf{a} = (a_1, \ldots, a_n)$, denote set $S_{\mathbf{a}} := \{a_1, \ldots, a_n\}$. There exists a unique $i \in [n]$ such that $f(S_{\mathbf{a}} - a_i) = S_{\mathbf{a}}$. Assign color i to \mathbf{a} .

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

- $f: \binom{[2n-1]}{n-1} \to \binom{[2n-1]}{n}$ is a perfect matching in the subset lattice, i.e., S must be a subset of f(S). And let $f^+(S)$ denote the only element in f(S) S.
- If S and T differ by exactly one element (i.e., $S = \{x_1, x_2, \dots, x_{n-2}, y\}, T = \{x_1, x_2, \dots, x_{n-2}, z\}), \text{ then } f^+(S) \neq f^+(T).$

Theorem: If Latin matching f exists for n, then

- G(n, 1, n-1) is *n*-colorable.
- the best winning probability in all-right rule equals 1/n. (matching the $1/\binom{k+d}{d}$ upper bound)

Proof Sketch. For a placement $\mathbf{a} = (a_1, \ldots, a_n)$, denote set $S_{\mathbf{a}} := \{a_1, \ldots, a_n\}$. There exists a unique $i \in [n]$ such that $f(S_{\mathbf{a}} - a_i) = S_{\mathbf{a}}$. Assign color i to \mathbf{a} .

If two placements $\mathbf{a} = (a_1, \ldots, a_n)$, $\mathbf{b} = (b_1, \ldots, b_n)$ have the same color *i*, then \mathbf{a}, \mathbf{b} must differ at ≥ 2 coordinates (and thus not adjacent on *G*).

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

- $f: \binom{[2n-1]}{n-1} \to \binom{[2n-1]}{n}$ is a perfect matching in the subset lattice, i.e., S must be a subset of f(S). And let $f^+(S)$ denote the only element in f(S) S.
- If S and T differ by exactly one element (i.e., $S = \{x_1, x_2, \dots, x_{n-2}, y\}, T = \{x_1, x_2, \dots, x_{n-2}, z\}), \text{ then } f^+(S) \neq f^+(T).$

Theorem: If Latin matching f exists for n, then

- G(n, 1, n-1) is *n*-colorable.
- the best winning probability in all-right rule equals 1/n. (matching the $1/\binom{k+d}{d}$ upper bound)

Proof Sketch. For a placement $\mathbf{a} = (a_1, \ldots, a_n)$, denote set $S_{\mathbf{a}} := \{a_1, \ldots, a_n\}$. There exists a unique $i \in [n]$ such that $f(S_{\mathbf{a}} - a_i) = S_{\mathbf{a}}$. Assign color i to \mathbf{a} .

If two placements $\mathbf{a} = (a_1, \ldots, a_n)$, $\mathbf{b} = (b_1, \ldots, b_n)$ have the same color *i*, then \mathbf{a}, \mathbf{b} must differ at ≥ 2 coordinates (and thus not adjacent on *G*). This *n*-coloring induces *n* different independent sets of *G*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Discussion on Latin Matching

Theorem: If Latin matching exists for *n*, then *n* is a prime number.

.

Discussion on Latin Matching

Theorem: If Latin matching exists for n, then n is a prime number. (Proved using a double-counting argument and a number-theoretic lemma)

· · · · · · ·

Discussion on Latin Matching

Theorem: If Latin matching exists for n, then n is a prime number.

(Proved using a double-counting argument and a number-theoretic lemma)

Connection with coding theory:

• The Latin matching construction for n = 5 case can be obtained via extended Hamming[8,4,4] codes.

• Application of Latin matchings in our unique-supply variation of Hat Guessing Game is analogous to the application of Hamming codes in the original (red-blue) variation.

• • = • • = •

Bipartite graph H(n, k, d):

• Left nodes: possible observations of every player

Bipartite graph H(n, k, d):

- Left nodes: possible observations of every player
- Right nodes: possible placements

Bipartite graph H(n, k, d):

- Left nodes: possible observations of every player
- Right nodes: possible placements
- Edge: observation consistent with placement

Lemma: The best winning probability in the one-right rule equals $\nu(H)/|G|$, where $\nu(H)$ denotes the **maximum matching** size of graph *H*.

Theorem: The best winning probability in the one-right rule equals $\min\{1, n/{\binom{k+d}{d}}\}$.

Theorem: The best winning probability in the one-right rule equals $\min\{1, n/{\binom{k+d}{d}}\}$.

Proof Sketch. H is a regular bipartite graph (vertices on the same side has the samd degree). This implies that Hhas a complete matching.

The optimal strategy for one-right rule obtained from complete matching is not explicitly represented. For some restricted case, e.g., n = 2 or k = 1, explicit strategies could be obtained via combinatorial constructions.

The optimal strategy for one-right rule obtained from complete matching is not explicitly represented. For some restricted case, e.g., n = 2 or k = 1, explicit strategies could be obtained via combinatorial constructions.

Can we show/disprove the existence of Latin matchings for primes n > 5? (It is known that *cyclic* Latin matching does not exist for n = 7.)

The optimal strategy for one-right rule obtained from complete matching is not explicitly represented. For some restricted case, e.g., n = 2 or k = 1, explicit strategies could be obtained via combinatorial constructions.

Can we show/disprove the existence of Latin matchings for primes n > 5? (It is known that *cyclic* Latin matching does not exist for n = 7.)

Can we find other applications of combinatorial tools (e.g., codes, ordered designs, Latin square/Latin matching) in cooperative multi-player games?

イロト 不得下 イヨト イヨト 二日

Thank you!

Kai Jin, Ce Jin, Zhaoquan Gu

・ロト ・回ト ・ヨト ・ヨト