# Cooperation via Codes in Restricted Hat Guessing Games 

Kai Jin (HKUST)<br>Ce Jin (Tsinghua University)<br>Zhaoquan Gu (Guangzhou University)

AAMAS 2019

## Hat Guessing Games

Hat Guessing Games have been studied extensively in recent years, due to their connections to

- graph entropy
- circuit complexity
- network coding
- auctions


## Hat Guessing Games

Hat Guessing Games have been studied extensively in recent years, due to their connections to

- graph entropy
- circuit complexity
- network coding
- auctions
- . .

There are many variations of the Hat Guessing game.

## Game definition

We study the unique-supply rule (which is a restricted version of the "finite-supply rule" [BHKLO9]) :

## Game definition

We study the unique-supply rule (which is a restricted version of the "finite-supply rule" [BHKL09]) :

- A cooperative team of $n$ players, and $T$ hats with distinct colors $1, \ldots, T$
- The dealer uniformly randomly places $k$ hats to each player, and $d$ hats remain in the dealer's hand. ( $T=n k+d$ )
- Each player sees the hats of all other players, but cannot see the hats of his (her) own.


## Game definition

( $n$ players and $T$ distinct hats. Each player gets $k$ hats. $d=T-n k \geq 1$ hats remain.)

- Each player guesses $k$ colors. The guess is right iff they exactly match the $k$ colors ( $s$ )he receives.
- All players guess simultaneously. No communication is allowed after game starts.


## Game definition

( $n$ players and $T$ distinct hats. Each player gets $k$ hats. $d=T-n k \geq 1$ hats remain.)

- Each player guesses $k$ colors. The guess is right iff they exactly match the $k$ colors ( $s$ )he receives.
- All players guess simultaneously. No communication is allowed after game starts.

Design a cooperative strategy to maximize winning probability.

## Game definition

( $n$ players and $T$ distinct hats. Each player gets $k$ hats. $d=T-n k \geq 1$ hats remain.)

- Each player guesses $k$ colors. The guess is right iff they exactly match the $k$ colors ( $s$ )he receives.
- All players guess simultaneously. No communication is allowed after game starts.

Design a cooperative strategy to maximize winning probability. We consider two winning rules:

- All-right rule: The team wins iff all players are right
- One-right rule: The team wins iff at least one player is right


## Game definition

( $n$ players and $T$ distinct hats. Each player gets $k$ hats. $d=T-n k \geq 1$ hats remain.)

A simple observation: The probability that player $i$ is right is $1 /\binom{k+d}{d}$.

## Game definition

( $n$ players and $T$ distinct hats. Each player gets $k$ hats. $d=T-n k \geq 1$ hats remain.)

A simple observation: The probability that player $i$ is right is $1 /\binom{k+d}{d}$.
In All-right rule: winning probability $\leq 1 /\binom{k+d}{d}$.

## Game definition

( $n$ players and $T$ distinct hats. Each player gets $k$ hats. $d=T-n k \geq 1$ hats remain.)

A simple observation: The probability that player $i$ is right is $1 /\binom{k+d}{d}$.
In All-right rule: winning probability $\leq 1 /\binom{k+d}{d}$.
In One-right rule: winning probability $\geq 1 /\binom{k+d}{d}$.

## Our contributions

- We present general methods to compute best strategies in both winning rules.


## Our contributions

- We present general methods to compute best strategies in both winning rules.
- We determine the exact value of maximum winning probability for some interesting special cases in the all-right rule, and the general case in the one-right rule.


## Our contributions

- We present general methods to compute best strategies in both winning rules.
- We determine the exact value of maximum winning probability for some interesting special cases in the all-right rule, and the general case in the one-right rule.
- Constructing explicit best strategies leads to some interesting combinatorial problems. We will study the Latin matching, which arises in one of our constructions.


## All-right rule: General Case $(n, k, d)$

Graph $G(n, k, d)$ :

- Nodes: all possible placements
- Edge ( $v_{1}, v_{2}$ ): iff there exists a player who cannot distinguish placements $v_{1}$ and $v_{2}$.


Graph $G$ for $(n, k, d)=(2,1,2)$

## All-right rule: General Case

(Edge $\left(v_{1}, v_{2}\right)$ iff there exists a player who cannot distinguish placements $v_{1}$ and $v_{2}$.)

(Graph $G$ for $(n, k, d)=(2,1,2))$

## All-right rule: General Case

(Edge $\left(v_{1}, v_{2}\right)$ iff there exists a player who cannot distinguish placements $v_{1}$ and $v_{2}$.)

$($ Graph $G$ for $(n, k, d)=(2,1,2))$
Theorem: The best winning probability in the all-right winning rule equals $\alpha(G) /|G|$, where $\alpha(G)$ denotes the maximum independent set size of $G$.

## All-right rule: General Case

(Edge $\left(v_{1}, v_{2}\right)$ iff there exists a player who cannot distinguish placements $v_{1}$ and $v_{2}$.)

(Graph G for $(n, k, d)=(2,1,2))$
Theorem: The best winning probability in the all-right winning rule equals $\alpha(G) /|G|$, where $\alpha(G)$ denotes the maximum independent set size of $G$. Example: $\alpha(G(2,1,2))=4$, implying that optimal strategy has $4 / 12=1 / 3$ winning probability, matching the $1 /\binom{k+d}{d}$ upper bound.

## All-right rule: General Case

(Edge $\left(v_{1}, v_{2}\right)$ iff there exists a player who cannot distinguish placements $v_{1}$ and $v_{2}$.)

(Graph G for $(n, k, d)=(2,1,2))$
Theorem: The best winning probability in the all-right winning rule equals $\alpha(G) /|G|$, where $\alpha(G)$ denotes the maximum independent set size of $G$. Example: $\alpha(G(2,1,2))=4$, implying that optimal strategy has $4 / 12=1 / 3$ winning probability, matching the $1 /\binom{k+d}{d}$ upper bound.
(In some cases the $1 /\binom{k+d}{d}$ upper bound is not achievable. Example: $(n, k, d)=(4,1,3))$

## All-right rule: An Interesting Special Case

$(n, k, d)=(n, 1, n-1)$ under all-right rule.
(total number of hats $T=2 n-1$; each of the $n$ players gets one hat)

## All-right rule: An Interesting Special Case

$(n, k, d)=(n, 1, n-1)$ under all-right rule.
(total number of hats $T=2 n-1$; each of the $n$ players gets one hat)
Definition: A Latin matching $f$ satisfies

- $f:\binom{[2 n-1]}{n-1} \rightarrow\binom{[2 n-1]}{n}$ is a perfect matching in the subset lattice, i.e., $S$ must be a subset of $f(S)$. And let $f^{+}(S)$ denote the only element in $f(S)-S$.
- If $S$ and $T$ differ by exactly one element (i.e.,
$\left.S=\left\{x_{1}, x_{2}, \ldots, x_{n-2}, y\right\}, T=\left\{x_{1}, x_{2}, \ldots, x_{n-2}, z\right\}\right)$, then $f^{+}(S) \neq f^{+}(T)$.


## Latin Matching

- $f:\binom{[2 n-1]}{n-1} \rightarrow\binom{[2 n-1]}{n}$ is a perfect matching in the subset lattice, i.e., $S$ must be a subset of $f(S)$. And let $f^{+}(S)$ denote the only element in $f(S)-S$.
- If $S$ and $T$ differ by exactly one element (i.e.,

$$
\left.S=\left\{x_{1}, x_{2}, \ldots, x_{n-2}, y\right\}, T=\left\{x_{1}, x_{2}, \ldots, x_{n-2}, z\right\}\right), \text { then } f^{+}(S) \neq f^{+}(T)
$$

Example of Latin matchings:

- $n=2: f(\{1\})=\{1,2\}, f(\{2\})=\{2,3\}, f(\{3\})=\{3,1\}$.
- $n=3$ :

| $\left(f^{\prime}\right)^{+}$ | 1 | 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | - | 4 | 2 | 5 | 3 |
| 2 | 4 | - | 5 | 3 | 1 |
| 3 | 2 | 5 | - | 1 | 4 |
| 4 | 5 | 3 | 1 | - | 2 |
| 5 | 3 | 1 | 4 | 2 | - |



## Latin Matching

Example of Latin matching for $n=5$ :

(Explanation: $f$ is cyclic. Black balls denote $S$ and green ball denotes $f(S)-S . f(\{3,4,5,6\})=\{3,4,5,6,9\}, f(\{2,3,4,5\})=\{2,3,4,5,8\}$.

## Connection Between Latin Matching and $(n, 1, n-1)$ Case

- $f:\binom{[2 n-1]}{n-1} \rightarrow\binom{[2 n-1]}{n}$ is a perfect matching in the subset lattice, i.e., $S$ must be a subset of $f(S)$. And let $f^{+}(S)$ denote the only element in $f(S)-S$.
- If $S$ and $T$ differ by exactly one element (i.e.,

$$
\left.S=\left\{x_{1}, x_{2}, \ldots, x_{n-2}, y\right\}, T=\left\{x_{1}, x_{2}, \ldots, x_{n-2}, z\right\}\right), \text { then } f^{+}(S) \neq f^{+}(T)
$$

Theorem: If Latin matching $f$ exists for $n$, then

- $G(n, 1, n-1)$ is $n$-colorable.
- the best winning probability in all-right rule equals $1 / n$. (matching the $1 /\binom{k+d}{d}$ upper bound)


## Connection Between Latin Matching and $(n, 1, n-1)$ Case

- $f:\binom{[2 n-1]}{n-1} \rightarrow\binom{[2 n-1]}{n}$ is a perfect matching in the subset lattice, i.e., $S$ must be a subset of $f(S)$. And let $f^{+}(S)$ denote the only element in $f(S)-S$.
- If $S$ and $T$ differ by exactly one element (i.e.,

$$
\left.S=\left\{x_{1}, x_{2}, \ldots, x_{n-2}, y\right\}, T=\left\{x_{1}, x_{2}, \ldots, x_{n-2}, z\right\}\right), \text { then } f^{+}(S) \neq f^{+}(T)
$$

Theorem: If Latin matching $f$ exists for $n$, then

- $G(n, 1, n-1)$ is $n$-colorable.
- the best winning probability in all-right rule equals $1 / n$. (matching the $1 /\binom{k+d}{d}$ upper bound)
Proof Sketch. For a placement $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)$, denote set $S_{\mathbf{a}}:=\left\{a_{1}, \ldots, a_{n}\right\}$. There exists a unique $i \in[n]$ such that $f\left(S_{\mathbf{a}}-a_{i}\right)=S_{\mathbf{a}}$. Assign color $i$ to $\mathbf{a}$.


## Connection Between Latin Matching and $(n, 1, n-1)$ Case

- $f:\binom{[2 n-1]}{n-1} \rightarrow\binom{[2 n-1]}{n}$ is a perfect matching in the subset lattice, i.e., $S$ must be a subset of $f(S)$. And let $f^{+}(S)$ denote the only element in $f(S)-S$.
- If $S$ and $T$ differ by exactly one element (i.e.,

$$
\left.S=\left\{x_{1}, x_{2}, \ldots, x_{n-2}, y\right\}, T=\left\{x_{1}, x_{2}, \ldots, x_{n-2}, z\right\}\right), \text { then } f^{+}(S) \neq f^{+}(T)
$$

Theorem: If Latin matching $f$ exists for $n$, then

- $G(n, 1, n-1)$ is $n$-colorable.
- the best winning probability in all-right rule equals $1 / n$. (matching the $1 /\binom{k+d}{d}$ upper bound)
Proof Sketch. For a placement $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)$, denote set
$S_{\mathbf{a}}:=\left\{a_{1}, \ldots, a_{n}\right\}$. There exists a unique $i \in[n]$ such that $f\left(S_{\mathbf{a}}-a_{i}\right)=S_{\mathbf{a}}$. Assign color $i$ to $\mathbf{a}$.
If two placements $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right), \mathbf{b}=\left(b_{1}, \ldots, b_{n}\right)$ have the same color $i$, then $\mathbf{a}, \mathbf{b}$ must differ at $\geq 2$ coordinates (and thus not adjacent on $G$ ).


## Connection Between Latin Matching and $(n, 1, n-1)$ Case

- $f:\binom{[2 n-1]}{n-1} \rightarrow\binom{[2 n-1]}{n}$ is a perfect matching in the subset lattice, i.e., $S$ must be a subset of $f(S)$. And let $f^{+}(S)$ denote the only element in $f(S)-S$.
- If $S$ and $T$ differ by exactly one element (i.e.,

$$
\left.S=\left\{x_{1}, x_{2}, \ldots, x_{n-2}, y\right\}, T=\left\{x_{1}, x_{2}, \ldots, x_{n-2}, z\right\}\right), \text { then } f^{+}(S) \neq f^{+}(T)
$$

Theorem: If Latin matching $f$ exists for $n$, then

- $G(n, 1, n-1)$ is $n$-colorable.
- the best winning probability in all-right rule equals $1 / n$. (matching the $1 /\binom{k+d}{d}$ upper bound)
Proof Sketch. For a placement $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)$, denote set
$S_{\mathbf{a}}:=\left\{a_{1}, \ldots, a_{n}\right\}$. There exists a unique $i \in[n]$ such that $f\left(S_{\mathbf{a}}-a_{i}\right)=S_{\mathbf{a}}$. Assign color $i$ to $\mathbf{a}$.
If two placements $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right), \mathbf{b}=\left(b_{1}, \ldots, b_{n}\right)$ have the same color $i$, then $\mathbf{a}, \mathbf{b}$ must differ at $\geq 2$ coordinates (and thus not adjacent on $G$ ). This $n$-coloring induces $n$ different independent sets of $G$.


## Discussion on Latin Matching

Theorem: If Latin matching exists for $n$, then $n$ is a prime number.

## Discussion on Latin Matching

Theorem: If Latin matching exists for $n$, then $n$ is a prime number. (Proved using a double-counting argument and a number-theoretic lemma)

## Discussion on Latin Matching

Theorem: If Latin matching exists for $n$, then $n$ is a prime number.
(Proved using a double-counting argument and a number-theoretic lemma)

Connection with coding theory:

- The Latin matching construction for $n=5$ case can be obtained via extended Hamming $[8,4,4]$ codes.

- Application of Latin matchings in our unique-supply variation of Hat Guessing Game is analogous to the application of Hamming codes in the original (red-blue) variation.


## One-right Rule

Bipartite graph $H(n, k, d)$ :

- Left nodes: possible observations of every player


Bipartite graph $H$ for $(n, k, d)=(2,1,2)$

## One-right Rule

Bipartite graph $H(n, k, d)$ :

- Left nodes: possible observations of every player
- Right nodes: possible placements


Bipartite graph $H$ for $(n, k, d)=(2,1,2)$

## One-right Rule

Bipartite graph $H(n, k, d)$ :

- Left nodes: possible observations of every player
- Right nodes: possible placements
- Edge: observation consistent with placement


Bipartite graph $H$ for $(n, k, d)=(2,1,2)$

## One-right Rule

Lemma: The best winning probability in the one-right rule equals $\nu(H) /|G|$, where $\nu(H)$ denotes the maximum matching size of graph $H$.

Theorem: The best winning probability in the one-right rule equals $\min \left\{1, n /\binom{k+d}{d}\right\}$.


Bipartite graph $H$ for $(n, k, d)=(2,1,2)$

## One-right Rule

Theorem: The best winning probability in the one-right rule equals $\min \left\{1, n /\binom{k+d}{d}\right\}$.

Proof Sketch. H is a regular bipartite graph (vertices on the same side has the samd degree). This implies that $H$ has a complete matching.


Bipartite graph $H$ for $(n, k, d)=(2,1,2)$

## Discussion \& Future research

The optimal strategy for one-right rule obtained from complete matching is not explicitly represented. For some restricted case, e.g., $n=2$ or $k=1$, explicit strategies could be obtained via combinatorial constructions.

## Discussion \& Future research

The optimal strategy for one-right rule obtained from complete matching is not explicitly represented. For some restricted case, e.g., $n=2$ or $k=1$, explicit strategies could be obtained via combinatorial constructions.

Can we show/disprove the existence of Latin matchings for primes $n>5$ ? (It is known that cyclic Latin matching does not exist for $n=7$.)

## Discussion \& Future research

The optimal strategy for one-right rule obtained from complete matching is not explicitly represented. For some restricted case, e.g., $n=2$ or $k=1$, explicit strategies could be obtained via combinatorial constructions.

Can we show/disprove the existence of Latin matchings for primes $n>5$ ? (It is known that cyclic Latin matching does not exist for $n=7$.)

Can we find other applications of combinatorial tools (e.g., codes, ordered designs, Latin square/Latin matching) in cooperative multi-player games?

## Thank you!

